Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 912: 168765, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37992832

ABSTRACT

Chemical movement influences exposure, remediation and interventions. Understanding chemical movement in addition to chemical concentrations at contaminated sites is critical to informed decision making. Using seepage meters and passive sampling devices we assessed both diffusive and advective flux of bioavailable polycyclic aromatic hydrocarbons (PAHs) at three time points, across two seasons, at a former creosote site in St. Helens, Oregon, United States. To our knowledge, this is the first time both diffusive and advective fluxes have been measured simultaneously at a contaminated site. Concentrations of 39 parent PAHs were determined by gas chromatography triple quadrupole mass spectrometry. Across both seasons and all sites, diffusive flux of PAHs was up to three orders of magnitude larger than advective flux. Release of PAHs from sediments and water were identified, likely from legacy contamination, as well as deposition from the air into the site from contemporary and other sources. The majority of PAH movement was comprised of three and four ring PAHs. Chemical movement on the site was found to be spatially and temporally variable. Volatilization decreased and atmospheric deposition increased from summer to fall. At the locations with higher levels of contamination, sum PAH release from sediments decreased by more than two orders of magnitude from summer to late fall. These data reflect the spatial heterogeneity and temporal variability of this site and demonstrate the importance of seasonality in assessing chemical movement at contaminated sites. Results from this study can inform future legacy site assessments to optimize remediation strategies and assess remediation effectiveness.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring , Air Pollutants/analysis , Water Pollutants, Chemical/analysis , Gas Chromatography-Mass Spectrometry , Seasons , Polycyclic Aromatic Hydrocarbons/analysis
2.
Curr Opin Toxicol ; 342023 Jun.
Article in English | MEDLINE | ID: mdl-37377741

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds produced by a variety of petrogenic and pyrogenic sources. PAHs inherently occur in the environment in complex mixtures. The early life-stage zebrafish model is a valuable tool for high-throughput screening (HTS) for toxicity of complex chemical mixtures due to its rapid development, high fecundity, and superb sensitivity to chemical insult. Zebrafish are amenable to exposure to surrogate mixtures as well as extracts of environmental samples and effect-directed analysis. In addition to its utility to HTS, the zebrafish has proven an excellent model for assessing chemical modes of action and identifying molecular initiating and other key events in an Adverse Outcome Pathway framework. Traditional methods of assessing PAH mixture toxicity prioritize carcinogenic potential and lack consideration of non-carcinogenic modes of action, assuming a similar molecular initiating event for all PAHs. Recent work in zebrafish has made it clear that while PAHs belong to the same chemical class, their modes of action can be divergent. Future research should use zebrafish to better classify PAHs by their bioactivity and modes of action to better understand mixture hazards.

3.
Sci Total Environ ; 892: 164566, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37270011

ABSTRACT

Arctic communities are disproportionately exposed to pollutants from sources including global atmospheric transport and formerly used defense sites (FUDS). The effects of climate change and increasing development in the Arctic have the potential to exacerbate this problem. Yupik People of Sivuqaq, or St Lawrence Island, Alaska are one such community with documented exposures to pollutants from FUDS, and their traditional lipid-rich foods such as blubber and rendered oils of marine mammals. Troutman Lake, adjacent to the Yupik community of Gambell, Alaska, was used as a disposal site during the decommission of the adjacent FUDS, leading to community concern about exposure to military pollution and intrusion from historic local dump sites. In collaboration with a local community group, this study utilized passive sampling devices deployed in Troutman Lake. Air, water and sediment deployed samplers were analyzed for unsubstituted and alkylated polycyclic aromatic hydrocarbons (PAHs), brominated and organophosphate flame retardants and polychlorinated biphenyls (PCBs). PAH concentrations were low and comparable to other remote/rural locations. PAHs were generally in deposition from the overlying atmosphere into Troutman Lake. Of the flame retardants, brominated diphenyl ether-47 was detected in all surface water samplers while triphenyl phosphate was detected in all environmental compartments. Both were at concentrations equivalent or lower than other remote locations. Of particular interest, we measured higher atmospheric concentrations of tris(2-chloroethyl) phosphate (TCEP) (0.75-2.8 ng/m3) than previously reported in the literature for remote Arctic sites (<0.017-0.56 ng/m3). TCEP was found to be in deposition to Troutman Lake at magnitudes from 290 to 1300 ng/m2/day. No PCBs were detected in this study. Our findings demonstrate the relevance of both modern and legacy chemicals from local and global sources. These results help us to understand the fate of anthropogenic contaminants in dynamic Arctic systems providing valuable data for communities, policy makers and scientists.


Subject(s)
Caniformia , Environmental Pollutants , Flame Retardants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Animals , Persistent Organic Pollutants , Flame Retardants/analysis , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Atmosphere , Water , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring
4.
Pharmacol Ther ; 225: 107837, 2021 09.
Article in English | MEDLINE | ID: mdl-33753133

ABSTRACT

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Subject(s)
Vaping , Chemistry , Humans , Toxicology , Vaping/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...