Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636130

ABSTRACT

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Subject(s)
Bone Resorption/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Animals , Apoptosis , Bone Resorption/metabolism , Cell Fusion , Cells, Cultured , Humans , Macrophages/cytology , Mice , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteoclasts/metabolism , Signal Transduction
4.
Trends Immunol ; 40(1): 35-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30502023

ABSTRACT

Subcapsular sinus (SCS) macrophages are strategically positioned at the lymph-tissue interface in the lymph node to trap and present antigen to B cells. Recent murine data has shown that SCS macrophages also prevent the systemic spread of lymph-borne pathogens and are capable of activating a diverse range of innate effector and adaptive memory cells, including follicular memory T cells and memory B cells (Bmems), that are either pre-positioned or rapidly recruited to the subcapsular niche following infection and inflammation. Furthermore, Bmems are rapidly reactivated to differentiate into plasma cells in subcapsular proliferative foci (SPF). Thus, understanding how SCS macrophages coordinate both innate and adaptive memory responses in the subcapsular niche can provide new opportunities to bolster immunity against pathogens and cancer.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Macrophages/immunology , Animals , Mice
5.
Nat Commun ; 9(1): 3372, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135429

ABSTRACT

Vaccine-induced immunity depends on the generation of memory B cells (MBC). However, where and how MBCs are reactivated to make neutralising antibodies remain unknown. Here we show that MBCs are prepositioned in a subcapsular niche in lymph nodes where, upon reactivation by antigen, they rapidly proliferate and differentiate into antibody-secreting plasma cells in the subcapsular proliferative foci (SPF). This novel structure is enriched for signals provided by T follicular helper cells and antigen-presenting subcapsular sinus macrophages. Compared with contemporaneous secondary germinal centres, SPF have distinct single-cell molecular signature, cell migration pattern and plasma cell output. Moreover, SPF are found both in human and mouse lymph nodes, suggesting that they are conserved throughout mammalian evolution. Our data thus reveal that SPF is a seat of immunological memory that may be exploited to rapidly mobilise secondary antibody responses and improve vaccine efficacy.


Subject(s)
B-Lymphocytes/metabolism , Lymph Nodes/metabolism , Adenine/analogs & derivatives , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Movement/drug effects , Cells, Cultured , Flow Cytometry , Humans , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Models, Theoretical , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Tamoxifen/pharmacology
6.
Front Immunol ; 9: 1553, 2018.
Article in English | MEDLINE | ID: mdl-30022984

ABSTRACT

Single-cell RNA sequencing (scRNA-Seq) is transforming our ability to characterize cells, particularly rare cells that are often overlooked in bulk population analytical approaches. This has lead to the discovery of new cell types and cellular states that echo the underlying heterogeneity and plasticity in the immune system. Technologies for the capture, sequencing, and bioinformatic analysis of single cells are rapidly improving, and scRNA-Seq is now becoming much more accessible to non-specialized laboratories. Here, we describe our experiences in adopting scRNA-Seq to the study of rare immune cells in their microanatomical niches.

7.
Elife ; 72018 07 09.
Article in English | MEDLINE | ID: mdl-29985127

ABSTRACT

Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark Galene, a versatile multi-platform software tool for image-based correction of sample motion blurring in both time resolved and conventional laser scanning fluorescence microscopy data in two and three dimensions. We show that Galene is able to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions. Thus, Galene can enable FLIM imaging in situations where a stable imaging platform is not always possible and rescue previously discarded quantitative imaging data.


Subject(s)
Imaging, Three-Dimensional , Intravital Microscopy , Motion , Algorithms , Animals , Biosensing Techniques , Cell Adhesion , Computer Simulation , Fluorescence Resonance Energy Transfer , Guanosine Triphosphate/metabolism , Humans , Intestines/physiology , Mice , Microscopy, Fluorescence , Models, Biological , Neoplasm Metastasis , Neuropeptides/metabolism , Pancreatic Neoplasms/pathology , Skin/anatomy & histology , Software , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
8.
Immunol Rev ; 283(1): 138-149, 2018 05.
Article in English | MEDLINE | ID: mdl-29664566

ABSTRACT

The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunity, Humoral , Immunologic Memory , Lymphocyte Activation/immunology , Animals , Antibody Formation/immunology , Humans , Vaccines/immunology , Virus Diseases/immunology , Viruses/immunology
9.
Methods Mol Biol ; 1623: 59-72, 2017.
Article in English | MEDLINE | ID: mdl-28589347

ABSTRACT

The germinal center (GC) reaction is the key process for the generation of high affinity antibodies to foreign antigen. Standard experimental techniques such as fluorescence-activated cell sorting and histology have provided numerous insights into the composition and function of the GC. However, these approaches are limited to a "snapshot" in time and are unable to fully capture the dynamic nature of the GC. Intravital two-photon microscopy overcomes these disadvantages and has led to several major advances in the field but is restricted by practical and technical limits that prevent long-range mapping and molecular studies. Here we describe procedures for optical marking or "tagging" of cells in precise microanatomical compartments by two-photon photoconversion that can be used for long-term fate mapping and transcript profiling of GC T and B cells.


Subject(s)
Gene Expression Profiling , Germinal Center/cytology , Germinal Center/metabolism , Microscopy , Molecular Imaging , Animals , Biomarkers , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Profiling/methods , Germinal Center/immunology , Image Processing, Computer-Assisted , Immunization , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Mice, Transgenic , Microscopy/methods , Molecular Imaging/methods
10.
Immunity ; 42(4): 704-18, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25840682

ABSTRACT

B helper follicular T (Tfh) cells are critical for long-term humoral immunity. However, it remains unclear how these cells are recruited and contribute to secondary immune responses. Here we show that primary Tfh cells segregate into follicular mantle (FM) and germinal center (GC) subpopulations that display distinct gene expression signatures. Restriction of the primary Tfh cell subpopulation in the GC was mediated by downregulation of chemotactic receptor EBI2. Following collapse of the GC, memory T cells persisted in the outer follicle where they scanned CD169(+) subcapsular sinus macrophages. Reactivation and intrafollicular expansion of these follicular memory T cells in the subcapsular region was followed by their extrafollicular dissemination via the lymphatic flow. These data suggest that Tfh cells integrate their antigen-experience history to focus T cell help within the GC during primary responses but act rapidly to provide systemic T cell help after re-exposure to the antigen.


Subject(s)
B-Lymphocytes/cytology , Cell Lineage/immunology , Germinal Center/cytology , Immunity, Humoral , T-Lymphocytes, Helper-Inducer/cytology , Animals , B-Lymphocytes/immunology , Cell Differentiation , Cell Lineage/genetics , Cell Movement/immunology , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation , Germinal Center/immunology , Immunologic Memory , Mice , Mice, Knockout , Primary Cell Culture , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Sialic Acid Binding Ig-like Lectin 1/genetics , Sialic Acid Binding Ig-like Lectin 1/immunology , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...