Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(4): e968-e978, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34738741

ABSTRACT

Rabbit haemorrhagic disease virus (RHDV) is associated with high morbidity and mortality in the European rabbit (Oryctolagus cuniculus). In 2010, a genetically distinct RHDV named RHDV2 emerged in Europe and spread to many other regions, including North America in 2016. Prior to this study it was unknown if eastern cottontails (ECT(s); Sylvilagus floridanus), one of the most common wild lagomorphs in the United States, were susceptible to RHDV2. In this study, 10 wild-caught ECTs and 10 New Zealand white rabbits (NZWR(s); O. cuniculus) were each inoculated orally with either RHDV (RHDVa/GI.1a; n = 5 per species) or RHDV2 (a recombinant GI.1bP-GI.2; n = 5 per species) and monitored for the development of disease. Three of the five ECTs that were infected with RHDV2 developed disease consistent with RHD and died at 4 and 6 days post-inoculation (DPI). The RHDV major capsid protein/antigen (VP60) was detected in the livers of three ECTs infected with RHDV2, but none was detected in the ECTs infected with RHDV. Additionally, RHD viral RNA was detected in the liver, spleen, intestine and blood of ECTs infected with RHDV2, but not in the ECTs infected with RHDV. RHD viral RNA was detected in urine, oral swabs and rectal swabs in at least two of five ECTs infected with RHDV2. One ECT inoculated with RHDV2 seroconverted and developed a high antibody titre by the end of the experimental period (21 DPI). ECTs inoculated with the classic RHDV did not seroconvert. In comparison, NZWRs inoculated with RHDV2 exhibited high mortality (five of five) at 2 DPI and four of five NZWRs inoculated with RHDV either died or were euthanized at 2 DPI indicating both of these viruses were highly pathogenic to this species. This experiment indicates that ECTs are susceptible to RHDV2 and can shed viral RNA, thereby suggesting this species could be involved in the epidemiology of this virus.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagomorpha , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Europe , Hemorrhagic Disease Virus, Rabbit/genetics , Lagomorpha/genetics , Phylogeny , RNA, Viral , Rabbits
2.
J Zoo Wildl Med ; 44(3): 589-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24063086

ABSTRACT

Deerpox virus (DPV) is the sole member of the newly ratified Cervidpoxvirus genus in the subfamily Chordopoxvirinae. Presented here is the first diagnostic report of isolation of DPV from a goitered gazelle (Gazella subgutturosa). A tissue homogenate was submitted by a zoologic park to the Minnesota Veterinary Diagnostic Laboratory at the University of Minnesota for poxvirus diagnostic investigation and then referred to Plum Island Foreign Animal Disease Diagnostic Laboratory for confirmation. Poxviral infection was confirmed using electron microscopy. The virus was cultured in vero cells and subjected to further diagnoses for characterization. Polymerase chain reaction targeting the major envelope (B2L) protein and RNA polymerase of parapoxviruses, and the poly-A polymerase gene of capripoxviruses, were all negative. Degenerative pan-poxvirus primers that target the DNA polymerase (DNApol) and DNA topoisomerase (DNAtopo) genes, however, successfully amplified poxviral DNA fragments. Amplification of the DNApol and DNAtopo genes yielded fragments of 543 and 344 base pairs, respectively. DNA sequence and phylogenetic analysis of each gene fragment from the gazelle isolate showed >97% identity in BLAST searches with two DPV virus strains (W848-83 and W-1170-84) isolated from North American mule deer (Odocoileus hemionus) in 1983-1984. Neighbor-joining trees indicate that the isolate is a member of the Cervidpoxvirus genus and shows a more-distant relationship to other ruminant poxviruses, namely the Capripoxvirus genus consisting of lumpy skin disease, sheeppox, and goatpox viruses. This report documents the premiere finding of DPV, a recently characterized virus, in gazelles and demonstrates the need for broadened investigation when diagnosing poxvirus infections in ruminants.


Subject(s)
Antelopes , Poxviridae Infections/veterinary , Poxviridae/classification , Poxviridae/isolation & purification , Animals , Animals, Zoo , Male , Minnesota/epidemiology , Phylogeny , Poxviridae/genetics , Poxviridae Infections/epidemiology , Poxviridae Infections/virology
3.
Science ; 325(5937): 204-6, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19590002

ABSTRACT

Since the discovery of the Marburg and Ebola species of filovirus, seemingly random, sporadic fatal outbreaks of disease in humans and nonhuman primates have given impetus to identification of host tropisms and potential reservoirs. Domestic swine in the Philippines, experiencing unusually severe outbreaks of porcine reproductive and respiratory disease syndrome, have now been discovered to host Reston ebolavirus (REBOV). Although REBOV is the only member of Filoviridae that has not been associated with disease in humans, its emergence in the human food chain is of concern. REBOV isolates were found to be more divergent from each other than from the original virus isolated in 1989, indicating polyphyletic origins and that REBOV has been circulating since, and possibly before, the initial discovery of REBOV in monkeys.


Subject(s)
Ebolavirus/isolation & purification , Filoviridae Infections/veterinary , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/isolation & purification , Swine Diseases/virology , Animals , Antibodies, Viral/blood , Disease Outbreaks/veterinary , Disease Reservoirs , Ebolavirus/classification , Ebolavirus/genetics , Ebolavirus/immunology , Filoviridae Infections/complications , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Hemorrhagic Fever, Ebola/virology , Humans , Molecular Sequence Data , Philippines/epidemiology , Phylogeny , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/genetics , Sus scrofa , Swine Diseases/epidemiology
4.
Virol J ; 4: 96, 2007 Oct 02.
Article in English | MEDLINE | ID: mdl-17910765

ABSTRACT

Rabbit Hemorrhagic Disease (RHD) is a severe acute viral disease specifically affecting the European rabbit Oryctolagus cuniculus. As the European rabbit is the predominant species of domestic rabbit throughout the world, RHD contributes towards significant losses to rabbit farming industries and endangers wild populations of rabbits in Europe and other predatory animals in Europe that depend upon rabbits as a food source. Rabbit Hemorrhagic Disease virus (RHDV) - a Lagovirus belonging to the family Caliciviridae is the etiological agent of RHD. Typically, RHD presents with sudden death in 70% to 95% of infected animals. There have been four separate incursions of RHDV in the USA, the most recent of which occurred in the state of Indiana in June of 2005. Animal inoculation studies confirmed the pathogenicity of the Indiana 2005 isolate, which caused acute death and pathological changes characterized by acute diffuse severe liver necrosis and pulmonary hemorrhages. Complete viral genome sequences of all USA outbreak isolates were determined and comparative genomics revealed that each outbreak was the result of a separate introduction of virus rather than from a single virus lineage. All of the USA isolates clustered with RHDV genomes from China, and phylogenetic analysis of the major capsid protein (VP60) revealed that they were related to a pandemic antigenic variant strain known as RHDVa. Rapid spread of the RHDVa pandemic suggests a selective advantage for this new subtype. Given its rapid spread, pathogenic nature, and potential to further evolve, possibly broadening its host range to include other genera native to the Americas, RHDVa should be regarded as a threat.


Subject(s)
Caliciviridae Infections/veterinary , Disease Outbreaks , Genome, Viral , Hemorrhagic Disease Virus, Rabbit/genetics , Rodent Diseases/epidemiology , Animals , Antigens, Viral/genetics , Base Sequence , Caliciviridae Infections/epidemiology , Caliciviridae Infections/pathology , Hemorrhage/pathology , Hemorrhagic Disease Virus, Rabbit/isolation & purification , Hemorrhagic Disease Virus, Rabbit/pathogenicity , Indiana/epidemiology , Liver/pathology , Lung/pathology , Molecular Sequence Data , Necrosis/pathology , Phylogeny , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Rodent Diseases/virology , Viral Structural Proteins/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...