Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(18): 8142-8154, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38640445

ABSTRACT

The covalent bonding framework of crystalline single-bonded cubic AsN, recently synthesized under high pressure and high temperature conditions in a laser-heated diamond anvil cell, is here studied by means of density functional theory calculations and compared to single crystal X-ray diffraction data. The precise localization of the nonbonding electron lone pairs and the determination of their distances and orientations are related to the presence of characteristic structural motifs and space regions of the unit cell dominated by repulsive electronic interactions, with the relative orientation of the electron lone pairs playing a key role in minimizing the energy of the structure. We find that the vibrational modes associated with the expression of the lone pairs are strongly localized, an observation that may have implications for the thermal conductivity of the compound. The results indicate the thermodynamic stability of the experimentally observed structure of AsN above ∼17 GPa, provide a detailed insight into the nature of the chemical bonding network underlying the formation of this compound, and open new perspectives to the design and high pressure synthesis of new pnictogen-based advanced materials for potential applications of energetic and technological relevance.

2.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38189576

ABSTRACT

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

3.
Angew Chem Int Ed Engl ; 63(11): e202319278, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38156778

ABSTRACT

A chemical reaction between Sb and N2 was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb3 N5 stoichiometry and structure belonging to orthorhombic space group Cmc21 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN6 distorted octahedra and trigonal prisms and three types of N atoms forming NSb4 distorted tetrahedra and NSb3 trigonal pyramids. Taking into account two longer Sb-N distances, the SbN6 trigonal prisms can be depicted as SbN8 square antiprisms and the NSb3 trigonal pyramids as NSb4 distorted tetrahedra. The Sb3 N5 structure can be described as an ordered stacking in the bc plane of bi- layers of SbN6 octahedra alternated to monolayers of SbN6 trigonal prisms (SbN8 square antiprisms). The discovery of Sb3 N5 finally represents the long sought-after experimental evidence for Sb to form a crystalline nitride, providing new insights about fundamental aspects of pnictogens chemistry and opening new perspectives for the high-pressure chemistry of pnictogen nitrides and the synthesis of an entire class of new materials.

4.
J Am Chem Soc ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37926946

ABSTRACT

Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.

5.
J Phys Chem Lett ; 14(35): 7860-7868, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37638524

ABSTRACT

The development of broadband emitters based on metal halide perovskites (MHPs) requires the elucidation of structure-emission property correlations. Herein, we report a combined experimental and theoretical study on a series of novel low-dimensional lead chloride perovskites, including ditopic aromatic cations. Synthesized lead chloride perovskites and their bromide analogues show both narrow and broad photoluminescence emission properties as a function of their cation and halide nature. Structural analysis shows a correlation between the rigidity of the ditopic cations and the lead halide octahedral distortions. Density functional theory calculations reveal, in turn, the pivotal role of octahedral distortions in the formation of self-trapped excitons, which are responsible for the insurgence of broad emission and large Stokes shifts together with a contribution of halide vacancies. For the considered MHP series, the use of conventional octahedral distortion parameters allows us to nicely describe the trend of emission properties, thus providing a solid guide for further materials design.

6.
Cell Rep Phys Sci ; 4(1): 101214, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-37292086

ABSTRACT

There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.

7.
J Phys Chem Lett ; 14(8): 2178-2186, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36808992

ABSTRACT

Tin-based metal halide perovskites with a composition of ASnX3 (where A= MA or FA and X = I or Br) have been investigated by means of X-ray total scattering techniques coupled to pair distribution function (PDF) analysis. These studies revealed that that none of the four perovskites has a cubic symmetry at the local scale and that a degree of increasing distortion is always present, in particular when the cation size is increased, i.e., from MA to FA, and the hardness of the anion is increased, i.e., from Br- to I-. Electronic structure calculations provided good agreement with experimental band gaps for the four perovskites when local dynamical distortions were included in the calculations. The averaged structure obtained from molecular dynamics simulations was consistent with experimental local structures determined via X-ray PDF, thus highlighting the robustness of computational modeling and strengthening the correlation between experimental and computational results.

8.
iScience ; 25(4): 104057, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35345464

ABSTRACT

Manipulation by external pressure of the optical response of 2D Metal Halide Perovskites (MHPs) is a fascinating route to tune their properties and promote the emergence of novel features. We investigate here DA2PbI4 and DA2GeI4 (DA = decylammonium) perovskites in the pressure range up to ∼12 GPa by X-ray powder diffraction, absorption, and photoluminescence spectroscopy. Although the two systems share a similar structural evolution with pressure, the optical properties are rather different and influenced by Pb or Ge. DA2PbI4 shows a progressive red shift from 2.28 eV (P = 0 GPa) to 1.64 eV at 11.5 GPa, with a narrow PL emission, whereas DA2GeI4, changes from a non-PL system at ambient pressure to a clear broadband emitter centered around 730 nm with an intensity maximum at about 3.7 GPa. These results unveil the role of the central atom on the nature of emission under pressure in 2D MHPs containing a long alkyl chain.

9.
Angew Chem Int Ed Engl ; 61(6): e202114191, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34797602

ABSTRACT

Chemical reactivity between As and N2 , leading to the synthesis of crystalline arsenic nitride, is here reported under high pressure and high temperature conditions generated by laser heating in a diamond anvil cell. Single-crystal synchrotron X-ray diffraction at different pressures between 30 and 40 GPa provides evidence for the synthesis of a covalent compound of AsN stoichiometry, crystallizing in a cubic P21 3 space group, in which each of the two elements is single-bonded to three atoms of the other and hosts an electron lone pair, in a tetrahedral anisotropic coordination. The identification of characteristic structural motifs highlights the key role played by the directional repulsive interactions between non-bonding electron lone pairs in the formation of the AsN structure. Additional data indicate the existence of AsN at room temperature from 9.8 up to 50 GPa. Implications concern fundamental aspects of pnictogens chemistry and the synthesis of innovative advanced materials.

10.
Chempluschem ; 86(6): 879-888, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34126001

ABSTRACT

Perovskites are attracting an increasing interest in the wide community of photovoltaics, optoelectronic, and detection, traditionally relying on lead-based systems. This Minireview provides an overview of the current status of experimental and computational results available on Ge-containing 3D and low-dimensional halide perovskites. While stability issues analogous to those of tin-based materials are present, some strategies to afford this problem in Ge metal halide perovskites (MHPs) for photovoltaics have already been identified and successfully employed, reaching efficiencies of solar devices greater than 7 % at up to 500 h of illumination. Interestingly, some Ge-containing MHPs showed promising nonlinear optical responses as well as quite broad emissions, which are worthy of further investigation starting from the basic materials chemistry perspective, where a large space for properties modulation through compositions/alloying/fnanostructuring is present.

11.
Proc Natl Acad Sci U S A ; 117(41): 25310-25318, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32989146

ABSTRACT

The origin of diamonds in ureilite meteorites is a timely topic in planetary geology as recent studies have proposed their formation at static pressures >20 GPa in a large planetary body, like diamonds formed deep within Earth's mantle. We investigated fragments of three diamond-bearing ureilites (two from the Almahata Sitta polymict ureilite and one from the NWA 7983 main group ureilite). In NWA 7983 we found an intimate association of large monocrystalline diamonds (up to at least 100 µm), nanodiamonds, nanographite, and nanometric grains of metallic iron, cohenite, troilite, and likely schreibersite. The diamonds show a striking texture pseudomorphing inferred original graphite laths. The silicates in NWA 7983 record a high degree of shock metamorphism. The coexistence of large monocrystalline diamonds and nanodiamonds in a highly shocked ureilite can be explained by catalyzed transformation from graphite during an impact shock event characterized by peak pressures possibly as low as 15 GPa for relatively long duration (on the order of 4 to 5 s). The formation of "large" (as opposed to nano) diamond crystals could have been enhanced by the catalytic effect of metallic Fe-Ni-C liquid coexisting with graphite during this shock event. We found no evidence that formation of micrometer(s)-sized diamonds or associated Fe-S-P phases in ureilites require high static pressures and long growth times, which makes it unlikely that any of the diamonds in ureilites formed in bodies as large as Mars or Mercury.

SELECTION OF CITATIONS
SEARCH DETAIL
...