Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1357611, 2024.
Article in English | MEDLINE | ID: mdl-38562562

ABSTRACT

This study investigates the impact of sweet potato plant sanitation on the yield and external and internal quality root storage exploring the nutritional content affected by various cooking methods (raw, boiled, and oven-cooked). The presence of viruses, and concretely of the sweet potato leaf curl virus (SPLCV), in sweet potato propagation material is shown to significantly reduce yield and modify storage root quality. Notably, the research reveals a substantial improvement in crop yield and external quality, reinforcing the efficacy of plant sanitation methods, specifically apical meristem culture, in preserving the overall productivity of sweet potato crops. Furthermore, the investigation identifies a noteworthy decrease in starch content, suggesting a dynamic interaction between plant sanitation and starch metabolism in response to viral diseases. The study also delves into the alteration of mineral absorption patterns, shedding light on how plant sanitation influences the uptake of essential minerals in sweet potato storage roots. While the health status of the plants only slightly affected magnesium (Mg) and manganese (Mn) accumulation, indicating a potential resilience of mineral balance under virus-infected conditions. Moreover, the research identifies significant modifications in antioxidant levels, emphasizing the role of plant sanitation in enhancing the nutritional quality of sweet potatoes. Heat-treated storage roots, subjected to various cooking methods such as boiling and oven-cooking, exhibit notable differences in internal quality parameters. These differences include increased concentrations of total soluble solids (SS) and heightened levels of antioxidant compounds, particularly phenolic and flavonoid compounds. The observed increase in antioxidant capacity underscores the potential health-promoting benefits associated with plant sanitation practices. Overall, the study underscores the critical importance of plant sanitation in enhancing sweet potato production sustainability, contributing to food security, and supporting local agricultural economies. The results emphasize the need for further research to optimize plant sanitation methods and promote their widespread adoption globally, providing valuable insights into the complex relationships in food quality.

2.
Sci Rep ; 13(1): 10435, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369738

ABSTRACT

Fungal infections are less studied than viral or bacterial infections and often more difficult to treat. Saccharomyces cerevisiae is usually identified as an innocuous human-friendly yeast; however, this yeast can be responsible for infections mainly in immunosuppressed individuals. S. cerevisiae is a relevant organism widely used in the food industry. Therefore, the study of food yeasts as the source of clinical infection is becoming a pivotal question for food safety. In this study, we demonstrate that S. cerevisiae strains cause infections to spread mostly from food environments. Phylogenetic analysis, genome structure analysis, and phenotypic characterization showed that the key sources of the infective strains are food products, such as bread and probiotic supplements. We observed that the adaptation to host infection can drive important phenotypic and genomic changes in these strains that could be good markers to determine the source of infection. These conclusions add pivotal evidence to reinforce the need for surveillance of food-related S. cerevisiae strains as potential opportunistic pathogens.


Subject(s)
Probiotics , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Phylogeny , Genomics , Dietary Supplements
3.
Microb Genom ; 6(10)2020 10.
Article in English | MEDLINE | ID: mdl-33021926

ABSTRACT

Ancient events of polyploidy have been linked to huge evolutionary leaps in the tree of life, while increasing evidence shows that newly established polyploids have adaptive advantages in certain stress conditions compared to their relatives with a lower ploidy. The genus Saccharomyces is a good model for studying such events, as it contains an ancient whole-genome duplication event and many sequenced Saccharomyces cerevisiae are, evolutionary speaking, newly formed polyploids. Many polyploids have unstable genomes and go through large genome erosions; however, it is still unknown what mechanisms govern this reduction. Here, we sequenced and studied the natural S. cerevisiae × Saccharomyces kudriavzevii hybrid strain, VIN7, which was selected for its commercial use in the wine industry. The most singular observation is that its nuclear genome is highly unstable and drastic genomic alterations were observed in only a few generations, leading to a widening of its phenotypic landscape. To better understand what leads to the loss of certain chromosomes in the VIN7 cell population, we looked for genetic features of the genes, such as physical interactions, complex formation, epistatic interactions and stress responding genes, which could have beneficial or detrimental effects on the cell if their dosage is altered by a chromosomal copy number variation. The three chromosomes lost in our VIN7 population showed different patterns, indicating that multiple factors could explain the mechanisms behind the chromosomal loss. However, one common feature for two out of the three chromosomes is that they are among the smallest ones. We hypothesize that small chromosomes alter their copy numbers more frequently as a low number of genes is affected, meaning that it is a by-product of genome instability, which might be the chief driving force of the adaptability and genome architecture of this hybrid.


Subject(s)
Chimera/genetics , Genome, Fungal/genetics , Genomic Instability/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , DNA Copy Number Variations/genetics , Gene Dosage/genetics , Genomics , Polyploidy , Sequence Analysis, DNA , Wine/microbiology
4.
Microb Genom ; 6(3)2020 03.
Article in English | MEDLINE | ID: mdl-32065577

ABSTRACT

Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.


Subject(s)
Genome, Fungal , Hybridization, Genetic , Saccharomyces/genetics , Genomic Instability , Phenotype , Phylogeny
5.
Front Genet ; 10: 187, 2019.
Article in English | MEDLINE | ID: mdl-30930934

ABSTRACT

Yeasts belonging to the Saccharomyces genus play an important role in human-driven fermentations. The species S. cerevisiae has been widely studied because it is the dominant yeast in most fermentations and it has been widely used as a model eukaryotic organism. Recently, other species of the Saccharomyces genus are gaining interest to solve the new challenges that the fermentation industry are facing. One of these species is S. kudriavzevii, which exhibits interesting physiological properties compared to S. cerevisiae, such as a better adaptation to grow at low temperatures, a higher glycerol synthesis and lower ethanol production. The aim of this study is to understand the molecular basis behind these phenotypic differences of biotechnological interest by using a species-based comparative genomics approach. In this work, we sequenced, assembled and annotated two new genomes of S. kudriavzevii. We used a combination of different statistical methods to identify functional divergence, signatures of positive selection and acceleration of substitution rates at specific amino acid sites of proteins in S. kudriavzevii when compared to S. cerevisiae, and vice versa. We provide a list of candidate genes in which positive selection could be acting during the evolution of both S. cerevisiae and S. kudriavzevii clades. Some of them could be related to certain important differences in metabolism previously reported by other authors such us DAL3 and ARO4, involved in nitrogen assimilation and amino acid biosynthesis. In addition, three of those genes (FBA1, ZIP1, and RQC2) showed accelerated evolutionary rates in Sk branch. Finally, genes of the riboflavin biosynthesis were also among those genes with a significant higher rate of nucleotide substitution and those proteins have amino acid positions contributing to functional divergence.

6.
Front Genet ; 10: 82, 2019.
Article in English | MEDLINE | ID: mdl-30809248

ABSTRACT

Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant strains, was a polysomic chromosome III. Transcriptomic data point out that chromosome III is important for the ethanol stress response, and this aneuploidy can be an advantage to respond rapidly to ethanol stress. We found that chromosome III copy numbers also explain differences in other strains. We show that removing the extra chromosome III copy in an ethanol-tolerant strain, returning to euploidy, strongly compromises its tolerance. Chromosome III aneuploidy appears frequently in ethanol-tolerance evolution experiments, and here, we show that aneuploidy is also used by natural strains to enhance their ethanol tolerance.

7.
Int J Food Microbiol ; 257: 262-270, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28711856

ABSTRACT

Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts.


Subject(s)
Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Transcriptome/genetics , Wine/microbiology , Alcohols/metabolism , Base Sequence , Environment , Fermentation , Gene Expression Profiling , Glycerol/metabolism , Membrane Glycoproteins/genetics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/metabolism , Sequence Analysis, RNA
8.
BMC Genomics ; 18(1): 159, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196526

ABSTRACT

BACKGROUND: Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci. RESULTS: In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions' adaptive nature. CONCLUSIONS: The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.


Subject(s)
Adaptation, Physiological/genetics , Cold Temperature , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Alleles , Chromosome Mapping , Evolution, Molecular , Fermentation/genetics , Gene Frequency , Genetic Association Studies , Genome, Fungal , Genomics/methods , Genotype , Phenotype , Phylogeny , Quantitative Trait Loci , Quantitative Trait, Heritable , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...