Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 277: 111445, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070018

ABSTRACT

Concerns about ammonia (NH3) losses from nitrogen (N) mineral fertilizers have forced policymakers to set emission reduction commitments across Europe. Although best available techniques (BATs) have been recommended, large uncertainties still exist due to poorly targeted site-specific approaches that might compromise their effectiveness. Here we proposed and tested a conceptual framework designed to identify most effective BATs that reduce NH3 at the site-specific level. The study was conducted in the Veneto region, northeast Italy. After the mapping of NH3 emission potential areas, BATs and business-as-usual N fertilization scenarios were assessed using a modified version of the DNDC agroecosystem model and compared with urea broadcast distribution under different pedo-climatic conditions. The most promising practices were further tested in a field experiment using a wind tunnel combined with a FTIR gas analyzer. Results showed that closed-slot injection reduced NH3 emissions with any type of mineral or organic fertilizers. Injected application, with ammonium nitrate or organic fertilizers, reduced NH3 loss in maize by 75% and 96%, respectively, and in winter wheat by 87% and 98%, compared to surface broadcast. Injection was the most promising technology to support, being already available to farmers. However, some increase in nitrate leaching was observed, mostly in case of winter wheat (+24% for AN injection; +89% for organic fertilizers). By contrast, urea incorporation with hoeing, the most common technique used by farmers in spring crops, did not show satisfactory results, because the partial burial of urea caused strong NH3 emissions that were even higher compared to surface broadcast. Recommended NH3 reduction techniques should be tailored to local pedo-climatic and management conditions, and evaluated, in a holistic approach, considering all N fluxes in the environment.


Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , Europe , Fertilizers/analysis , Italy , Nitrogen , Soil , Volatilization
2.
Water Sci Technol ; 47(7-8): 275-82, 2003.
Article in English | MEDLINE | ID: mdl-12793690

ABSTRACT

An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.


Subject(s)
Agriculture , Geographic Information Systems , Models, Theoretical , Nitrogen/analysis , Water Pollutants/analysis , Italy , Risk Assessment , Water Movements , Water Pollution/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...