Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38668318

ABSTRACT

The therapeutic effects of saffron have been reported and described in relation to its major derivatives. Among them, in terms of saffron's properties, crocin and crocetin absorption and bioavailability have been the most studied. Nevertheless, the metabolism of these major compounds of saffron has not yet been entirely elucidated. Current data indicate that the phase 2 metabolism of crocetins go through conjugation reactions. Crocetins could also be present in isomeric forms such as other carotenoids. Nonetheless, there are still shadow areas in regard to the measurements of the different circulating forms of crocetins after oral saffron extract administration (Safr'Inside™). In using various approaches, we propose the identification of a new cis isomeric form of crocetin, the 6-cis-crocetin. This compound was found in human serum samples after an oral administration of saffron extract. The 6-cis-crocetin represents 19% of the total crocetin measured after 45 min of consumption. These data mark, for the first time, the presence of a cis isomeric form of crocetin in human serum samples. Moreover, this study led to the development of an analytical method that is able to identify and quantify both isomeric forms (trans and cis).

2.
Pharmaceutics ; 16(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543230

ABSTRACT

Safe and anti-inflammatory plant-based natural products present an increasing focus in the treatment of chronic inflammatory diseases such as osteoarthritis or inflammatory bowel diseases. Among them, saffron, a spice derived from the stigma of Crocus sativus, could have anti-inflammatory properties and would be therefore a promising therapeutic agent for the treatment of such conditions. However, the anti-inflammatory molecular mechanisms of saffron in humans are still understudied and unclear. In this study, combining human serum metabolites and cell cultures, we evaluated the effect of circulating metabolites from the consumption of a patented saffron extract (Safr'InsideTM) on the chondrocytes and colon epithelial cell responses to inflammatory stress. Parametric or non-parametric Analysis of Variance with post hoc tests was performed. We demonstrated that human serum containing metabolites from saffron intake attenuated IL-1ß-stimulated production of PGE2 and MMP-13 in chondrocyte cells and limited the increase in ICAM-1, MCP-1, iNOS, and MMP-3 in human epithelial cells following combined IL-1ß and TNF-α inflammatory stimulation. Altogether, these data provide new findings into the mechanisms underlying the beneficial effects of saffron on chondrocytes and enterocyte cells at the cellular level and in the context of chronic inflammatory disorders.

3.
Molecules ; 27(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296396

ABSTRACT

Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‱ (+/- 40) and -210‱ (+/- 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of -28.62‱, -30.12‱ and -30.70‱, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.


Subject(s)
Crocus , Crocus/chemistry , Iran , Plant Extracts/chemistry , Cyclohexenes/analysis , Terpenes/analysis , Isotopes/analysis
4.
Nutrients ; 14(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35406124

ABSTRACT

Increases in oxidative stress have been reported to play a central role in the vulnerability to depression, and antidepressant drugs may reduce increased oxidative stress in patients. Among the plants exerting anti-inflammatory and anti-oxidant properties, saffron, a spice derived from the flower of Crocus sativus, is also known for its positive effects on depression, potentially through its SSRI-like properties. However, the molecular mechanisms underlying these effects and their health benefits for humans are currently unclear. Using an original ex vivo clinical approach, we demonstrated for the first time that the circulating human metabolites produced following saffron intake (Safr'InsideTM) protect human neurons from oxidative-stress-induced neurotoxicity by preserving cell viability and increasing BNDF production. In particular, the metabolites significantly stimulated both dopamine and serotonin release. In addition, the saffron's metabolites were also able to protect serotonergic tone by inhibiting the expression of the serotonin transporter SERT and down-regulating serotonin metabolism. Altogether, these data provide new biochemical insights into the mechanisms underlying the beneficial impact of saffron on neuronal viability and activity in humans, in the context of oxidative stress related to depression.


Subject(s)
Crocus , Depressive Disorder , Crocus/chemistry , Humans , Neurons , Oxidative Stress , Plant Extracts/chemistry , Plant Extracts/pharmacology , Serotonin
5.
Front Nutr ; 7: 606124, 2020.
Article in English | MEDLINE | ID: mdl-33598475

ABSTRACT

Anxiety, stress, and low mood are closely related and may contribute to depressive symptoms. Among non-pharmacological solutions to improve subclinical mood symptoms and resilience to stress, natural products such as saffron-identified as promising following preliminary beneficial effects in major depressive disorder-represent a relevant strategy. This study aimed to assess the efficacy of 8 weeks' supplementation with 30 mg standardized saffron extract on emotional well-being in healthy adults with subclinical feelings of low mood and anxiety and/or stress and evaluate the acute effect of saffron in response to a lab-based psychosocial stressor. The study adopted a double-blind, randomized, parallel groups design in which 56 healthy male and female individuals (18-54 years) received either a saffron extract or a placebo for 8 weeks. Chronic effects of saffron on subjective anxiety, stress, and depressive feelings were assessed using a questionnaire battery [including Profile of Mood State-2, (POMS)] and acute effects in response to a lab-based psychosocial stressor were measured through psychological and physiological parameters. Urinary crocetin levels were quantified. Participants who received the saffron extract reported reduced depression scores and improved social relationships at the end of the study. Urinary crocetin levels increased significantly with saffron supplementation and were correlated with change in depression scores. The typical stress-induced decrease in heart rate variability (HRV) during exposure to the stressor was attenuated following acute saffron intake. Saffron extract appears to improve subclinical depressive symptoms in healthy individuals and may contribute to increased resilience against the development of stress-related psychiatric disorders. Clinical trials number: NCT03639831.

6.
Food Chem ; 257: 325-332, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29622218

ABSTRACT

A new UHPLC-DAD-MS method based on a Core-Shell particles column was developed to realize the rapid separation of saffron stigma metabolites (Crocus sativus L.). A single separation of 35 compounds included cis and trans-crocetin esters (crocins), cis-crocetin, trans-crocetin, kaempferol derivatives, safranal, and picrocrocin from pure saffron stigmas. This method permitted the detection of 11 picrocrocin derivatives as the typical group of compounds from saffron as well as the detection of gardenia-specific compounds as typical adulterant markers. The metabolite concentration in a Standardized Saffron Extract (SSE) was determined using the method described herein and by comparison to the ISO3632 conventional method. The safranal content was 5-150 times lower than the value of 2% that was expected via ISO3632 analyses. Using the same Core-Shell separation, geniposide detection appeared to be a relevant approach for detecting the adulteration of saffron by using gardenia.


Subject(s)
Chromatography, High Pressure Liquid , Crocus/chemistry , Gardenia/chemistry , Mass Spectrometry , Plant Extracts/analysis , Carotenoids/analysis , Carotenoids/isolation & purification , Chromatography, High Pressure Liquid/standards , Crocus/metabolism , Cyclohexenes/analysis , Cyclohexenes/isolation & purification , Fruit/chemistry , Fruit/metabolism , Gardenia/metabolism , Glucosides/analysis , Glucosides/isolation & purification , Isomerism , Mass Spectrometry/standards , Plant Extracts/chemistry , Quality Control , Terpenes/analysis , Terpenes/isolation & purification , Vitamin A/analogs & derivatives
7.
Food Chem ; 214: 9-15, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27507441

ABSTRACT

A Doehlert experimental design was conducted and surface response methodology was used to determine the effect of temperature, contact time and solid liquid ratio on isoflavone extraction from soybean flour or Soybean Protein Isolate in pressurized water system. The optimal conditions conducted gave an extraction yield of 85% from soybean flour. For Soybean Protein Isolate compared to soybean flour, the isoflavone extraction yield is 61%. This difference could be explained by higher aglycon content, while aglycon appears to be the least extracted isoflavone by pressurized water. The solid liquid ratio in the ASE cell was the overriding factor in obtaining high yields with both soybean products, while temperature has less influence. A high temperature causes conversion of the malonyls-glucosides and glucosides isoflavone derivatives into glucosides or aglycons forms. pressurized water extraction showed a high solubilization of protein material up to 95% of inserted Soybean Protein Isolate.


Subject(s)
Flour/analysis , Glycine max/chemistry , Isoflavones/analysis , Soybean Proteins/analysis , Water/chemistry , Glucosides/analysis , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...