Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 18808, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827164

ABSTRACT

Unilamellar lipid vesicles can serve as model for protocells. We present a vesicle fission mechanism in a thermal gradient under flow in a convection chamber, where vesicles cycle cold and hot regions periodically. Crucial to obtain fission of the vesicles in this scenario is a temperature-induced membrane phase transition that vesicles experience multiple times. We model the temperature gradient of the chamber with a capillary to study single vesicles on their way through the temperature gradient in an external field of shear forces. Starting in the gel-like phase the spherical vesicles are heated above their main melting temperature resulting in a dumbbell-deformation. Further downstream a temperature drop below the transition temperature induces splitting of the vesicles without further physical or chemical intervention. This mechanism also holds for less cooperative systems, as shown here for a lipid alloy with a broad transition temperature width of 8 K. We find a critical tether length that can be understood from the transition width and the locally applied temperature gradient. This combination of a temperature-induced membrane phase transition and realistic flow scenarios as given e.g. in a white smoker enable a fission mechanism that can contribute to the understanding of more advanced protocell cycles.

2.
Nat Chem ; 11(9): 779-788, 2019 09.
Article in English | MEDLINE | ID: mdl-31358919

ABSTRACT

Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, by supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution.


Subject(s)
Gases/chemistry , Lipids/chemistry , Oligonucleotides/chemistry , RNA, Catalytic/chemistry , RNA/chemistry , Crystallization , Gases/chemical synthesis , Hydrogels/chemical synthesis , Hydrogels/chemistry , Phosphorylation , Water/chemistry
3.
Angew Chem Int Ed Engl ; 55(23): 6676-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27060490

ABSTRACT

DNA phase transitions are often induced by the addition of condensation agents or by dry concentration. Herein, we show that the non-equilibrium setting of a moderate heat flow across a water-filled chamber separates and gelates DNA strands with single-base resolution. A dilute mix of DNA with two slightly different gel-forming sequences separates into sequence-pure hydrogels under constant physiological solvent conditions. A single base change in a 36 mer DNA inhibits gelation. Only sequences with the ability to form longer strands are concentrated, further elongated, and finally gelated by length-dependent thermal trapping. No condensation agents, such as multivalent ions, were added. Equilibrium aggregates from dry concentration did not show any sequence separation. RNA is expected to behave identically owing to its equal thermophoretic properties. The highly sequence-specific phase transition points towards new possibilities for non-equilibrium origins of life.

4.
Chembiochem ; 15(6): 879-83, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24578245

ABSTRACT

Recent progress in the synthesis of nucleotides from prebiotically plausible precursors has opened up new ways to explain the origin of genetic matter. Mechanisms for the polymerization of nucleotides without the help of catalysts are, however, rare. Complementary to the experiments done by Costanzo et al., we found that drying 3',5'-cyclic GMP leads to poly-G RNA strands with lengths of up to 40 nucleotides. We also show that the polymerization to long RNA strands is considerably more efficient under dry conditions than for cGMP polymerization in water. The length depends on the incubation time of dry nucleotides at temperatures of 40-80 °C. No enzymes or other catalysts are needed for successful polymerization.


Subject(s)
Cyclic GMP/metabolism , RNA/metabolism , Polymerization , RNA/chemistry , Ribonuclease T1/metabolism , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...