Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Sci Nutr ; 6(3): 523-531, 2018 May.
Article in English | MEDLINE | ID: mdl-29876102

ABSTRACT

A survey was carried out to determine natural occurrence of tenuazonic acid (TA) in healthy and rotten wine grapes samples from different varieties (n = 37) collected during 2016 vintage in the region of DOC San Rafael (Argentina). In addition, inoculation experiments with three Alternaria alternata strains in wine grapes were done to elucidate TA production and its major influencing factors. The 16.2% (6/37) of total wine grape samples showed TA contamination with 4% (1/25) of incidence in healthy samples (77 µg·kg-1) and 42% (5/12) in rotten samples (10-778 µg·kg-1). Malbec, Cabernet Sauvignon, and Syrah varieties showed TA contamination, whereas Bonarda, Ancelota, Torrontés, Semillón, and Chenin did not. During inoculation experiments in wine grapes, two of three strains were able to produce TA among the evaluated conditions and the highest TA production was observed at 15°C and 25°C after 24 days of incubation. Nutritional composition of grapes results appropriate for A. alternata infection and TA production and, together with the adequate field conditions, favors TA natural occurrence in wine grapes.

2.
Int J Food Microbiol ; 266: 14-20, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29156243

ABSTRACT

Epiphytic isolates with yeast characteristics from grapes of the Malbec cultivar were obtained in order to find antagonists against Alternaria alternata. From a total of 111 isolates, 82% corresponded to the yeast-like organism Aureobasidium pullulans and the rest to the non-Saccharomyces yeasts Hanseniaspora uvarum (6.3%), Metschnikowia pulcherrima or spp. (5.4%), Cryptoccocus laurentti II (2.7%), Starmerella bacilaris or Candida zemplinina (2.7%) and Rhodotorula spp. (0.9%). The 22.4% (15 out of 67) of epiphytic yeasts and yeast-like organisms evaluated were able to reduce A. alternata infection from 0.0 to 4.4% when applied 2h previous to pathogen inoculation on wounds of grape berries. From these selected strains, 14 out of 15 strains completely prevented A. alternata infection (0.0%), which implies potential for field application. All Metschnikowia (pulcherrima or spp.), S. bacillaris and almost all H. uvarum evaluated strains showed antagonist capability against A. alternata. Meanwhile, none of the lesser nutritional requirement strains belonging to A. pullulans, Cr. laurenti II and Rhodotorula spp. did. All the yeasts with capacity to prevent A. alternata infection also reduced tenuazonic acid (TA) production by 81.2 to 99.8%, finding TA levels similar to negative controls. Therefore, the epiphytic yeasts selected are promising as biological control agents against Alternaria infection and toxin production in grapes for winemaking.


Subject(s)
Alternaria/physiology , Biological Control Agents , Food Microbiology , Vitis/microbiology , Yeasts/metabolism , Argentina , Fruit/microbiology , Tenuazonic Acid/biosynthesis , Yeasts/isolation & purification
3.
J Food Prot ; 65(3): 534-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11899053

ABSTRACT

Adhesion to the intestinal mucosa is a desirable property for probiotic microorganisms and has been related to many of their health benefits. In the present study, 24 dairy Propionibacterium strains were assessed with regard to their hydrophobic characteristics and their autoaggregation and hemagglutination abilities, since these traits have been shown to be indicative of adherence in other microorganisms. Six strains were further tested for their capacity to adhere to ileal epithelial cells in vitro and in vivo. The results of the study showed that propionibacteria were highly hydrophilic, and hemagglutination and autoaggregation were properties not commonly found among these microorganisms. No relationship was found between surface characteristics and adhesion ability, since hemagglutinating, autoaggregating, and nonautoaggregating bacteria were able to adhere to intestinal cells both in vitro and in vivo. Microscopic examination revealed that autoaggregating cells adhered in clusters, with adhesion being mediated by only a few bacteria, whereas the hemagglutinating and nonautoaggregating strains adhered individually or in small groups making contact with each epithelial cell with the entire bacterial surface. The in vitro assessment of adhesion was a good indication of the in vivo association of propionibacteria with the intestinal epithelium. Therefore, the in vitro method presented here should be valuable in screening routinely adhesive properties of propionibacteria for probiotic purposes. The adhesion ability of dairy propionibacteria would prolong their maintenance in the gut and increase the duration of their provision of beneficial effects in the host, supporting the potential of Propionibacterium in the development of new probiotic products.


Subject(s)
Intestinal Mucosa/microbiology , Propionibacterium/physiology , Bacterial Adhesion , Epithelium/microbiology , Hemagglutination , Intestinal Mucosa/cytology , Microscopy , Probiotics , Propionibacterium/ultrastructure , Water
SELECTION OF CITATIONS
SEARCH DETAIL