Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(46): eadg3256, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967182

ABSTRACT

Games have a long history as benchmarks for progress in artificial intelligence. Approaches using search and learning produced strong performance across many perfect information games, and approaches using game-theoretic reasoning and learning demonstrated strong performance for specific imperfect information poker variants. We introduce Student of Games, a general-purpose algorithm that unifies previous approaches, combining guided search, self-play learning, and game-theoretic reasoning. Student of Games achieves strong empirical performance in large perfect and imperfect information games-an important step toward truly general algorithms for arbitrary environments. We prove that Student of Games is sound, converging to perfect play as available computation and approximation capacity increases. Student of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold'em poker, and defeats the state-of-the-art agent in Scotland Yard, an imperfect information game that illustrates the value of guided search, learning, and game-theoretic reasoning.

2.
Science ; 356(6337): 508-513, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28254783

ABSTRACT

Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker, the quintessential game of imperfect information, is a long-standing challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect-information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated, with statistical significance, professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce strategies that are more difficult to exploit than prior approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...