Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
HPB (Oxford) ; 24(11): 1957-1966, 2022 11.
Article in English | MEDLINE | ID: mdl-35780039

ABSTRACT

BACKGROUND: Arterial resection (AR) for pancreatic adenocarcinoma is increasingly considered at specialized centers. We aimed to examine the incidence, risk factors, and outcomes of hepatic artery (HA) occlusion after revascularization. METHODS: We included patients undergoing HA resection with interposition graft (IG) or primary end-to-end anastomoses (EE). Complete arterial occlusion (CAO) was defined as "early" (EO) or "late" (LO) before/after 90 days respectively. Kaplan-Meier and change-point analysis for CAO was performed. RESULTS: HA resection was performed in 108 patients, IG in 61% (66/108) and EE in 39% (42/108). An equal proportion (50%) underwent HA resection alone or in combination with celiac and/or superior mesenteric artery. CAO was identified in 18% of patients (19/108) with arterial IG least likely to occlude (p=0.019). Hepatic complications occurred in 42% (45/108) and correlated with CAO, symptomatic patients, venous resection, and postoperative portal venous patency. CAO-related operative mortality was 4.6% and significantly higher in EO vs LO (p = 0.046). Median CAO occlusion was 126 days. With change-point analysis, CAO was minimal beyond postoperative day 158. CONCLUSION: CAO can occur in up to 18% of patients and the first 5-month post-operative period is critical for surveillance. LO is associated with better outcomes compared to EO unless there is inadequate portal venous inflow.


Subject(s)
Adenocarcinoma , Arterial Occlusive Diseases , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Hepatic Artery/surgery , Hepatic Artery/pathology , Adenocarcinoma/surgery , Treatment Outcome , Pancreatectomy/adverse effects , Portal Vein/surgery , Retrospective Studies
2.
Cancer Biol Ther ; 15(9): 1129-41, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24914950

ABSTRACT

Numerous tyrosine kinase inhibitors (TKIs) targeting c-Met are currently in clinical trials for several cancers. Their efficacy is limited due to the development of resistance. The present study aims to elucidate this mechanism of c-Met TKI resistance by investigating key mTOR and Wnt signaling proteins in melanoma cell lines resistant to SU11274, a c-Met TKI. Xenografts from RU melanoma cells treated with c-Met TKIs SU11274 and JNJ38877605 showed a 7- and 6-fold reduction in tumor size, respectively. Resistant cells displayed upregulation of phosphorylated c-Met, mTOR, p70S6Kinase, 4E-BP1, ERK, LRP6, and active ß-catenin. In addition, GATA-6, a Wnt signaling regulator, was upregulated, and Axin, a negative regulator of the Wnt pathway, was downregulated in resistant cells. Modulation of these mTOR and Wnt pathway proteins was also prevented by combination treatment with SU11274, everolimus, an mTOR inhibitor, and XAV939, a Wnt inhibitor. Treatment with everolimus, resulted in 56% growth inhibition, and a triple combination of SU11274, everolimus and XAV939, resulted in 95% growth inhibition in RU cells. The V600E BRAF mutation was found to be positive only in MU cells. Combination treatment with a c-Met TKI and a BRAF inhibitor displayed a synergistic effect in reducing MU cell viability. These studies indicate activation of mTOR and Wnt signaling pathways in c-Met TKI resistant melanoma cells and suggest that concurrent targeting of c-Met, mTOR, and Wnt pathways and BRAF may improve efficacy over traditional TKI monotherapy in melanoma patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Everolimus , Heterocyclic Compounds, 3-Ring/pharmacology , Heterografts , Human Growth Hormone/metabolism , Humans , Indoles/administration & dosage , Male , Melanoma/metabolism , Melanoma/pathology , Mice, Inbred BALB C , Mice, Nude , Mutation , Phosphorylation , Piperazines/administration & dosage , Protein Structure, Tertiary , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/administration & dosage , Pyridazines/administration & dosage , Signal Transduction , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Sulfonamides/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/metabolism
3.
Int J Nanomedicine ; 9: 43-53, 2014.
Article in English | MEDLINE | ID: mdl-24391441

ABSTRACT

Oligonucleotides homologous to 3'-telomere overhang (T-oligos) trigger inherent telomere-based DNA damage responses mediated by p53 and/or ATM and induce senescence or apoptosis in various cancerous cells. However, T-oligo has limited stability in vivo due to serum and intracellular nucleases. To develop T-oligo as an innovative, effective therapeutic drug and to understand its mechanism of action, we investigated the antitumor effects of T-oligo or T-oligo complexed with a novel cationic alpha helical peptide, PVBLG-8 (PVBLG), in a p53 null melanoma cell line both in vitro and in vivo. The uptake of T-oligo by MM-AN cells was confirmed by immunofluorescence, and fluorescence-activated cell sorting analysis indicated that the T-oligo-PVBLG nanocomplex increased uptake by 15-fold. In vitro results showed a 3-fold increase in MM-AN cell growth inhibition by the T-oligo-PVBLG nanocomplex compared with T-oligo alone. Treatment of preformed tumors in immunodeficient mice with the T-oligo-PVBLG nanocomplex resulted in a 3-fold reduction in tumor volume compared with T-oligo alone. This reduction in tumor volume was associated with decreased vascular endothelial growth factor expression and induction of thrombospondin-1 expression and apoptosis. Moreover, T-oligo treatment downregulated procaspase-3 and procaspase-7 and increased catalytic activity of caspase-3 by 4-fold in MM-AN cells. Furthermore, T-oligo induced a 10-fold increase of senescence and upregulated the melanoma tumor-associated antigens MART-1, tyrosinase, and thrombospondin-1 in MM-AN cells, which are currently being targeted for melanoma immunotherapy. Interestingly, siRNA-mediated knockdown of p73 (4-10-fold) abolished this upregulation of tumor-associated antigens. In summary, we suggest a key role of p73 in mediating the anticancer effects of T-oligo and introduce a novel nanoparticle, the T-oligo-PVBLG nanocomplex, as an effective anticancer therapeutic.


Subject(s)
Melanoma/drug therapy , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Oligonucleotides/therapeutic use , Peptides/administration & dosage , Animals , Cell Line, Tumor , Drug Combinations , Male , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Nude , Nanocapsules/ultrastructure , Oligonucleotides/genetics , Particle Size , Peptides/chemistry , Treatment Outcome
4.
PLoS One ; 8(11): e78398, 2013.
Article in English | MEDLINE | ID: mdl-24223799

ABSTRACT

The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4-5 and 11-22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2-4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-met/genetics , Signal Transduction/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Synergism , Drug Therapy, Combination , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Everolimus , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Indoles/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Quinazolines/pharmacology , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...