Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20407, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36437299

ABSTRACT

Many ramified, network-like patterns in nature, such as river networks or blood vessels, form as a result of unstable growth of moving boundaries in an external diffusive field. Here, we pose the inverse problem for the network growth-can the growth dynamics be inferred from the analysis of the final pattern? We show that by evolving the network backward in time one can not only reconstruct the growth rules but also get an insight into the conditions under which branch splitting occurs. Determining the growth rules from a single snapshot in time is particularly important for growth processes so slow that they cannot be directly observed, such as growth of river networks and deltas or cave passages. We apply this approach to analyze the growth of a real river network in Vermont, USA. We determine its growth rule and argue that branch splitting events are triggered by an increase in the tip growth velocity.


Subject(s)
Rivers , Diffusion
2.
Spat Spatiotemporal Epidemiol ; 39: 100440, 2021 11.
Article in English | MEDLINE | ID: mdl-34774255

ABSTRACT

Bayesian spatial models are widely used to analyse data that arise in scientific disciplines such as health, ecology, and the environment. Traditionally, Markov chain Monte Carlo (MCMC) methods have been used to fit these type of models. However, these are highly computationally intensive methods that present a wide range of issues in terms of convergence and can become infeasible in big data problems. The integrated nested Laplace approximation (INLA) method is a computational less-intensive alternative to MCMC that allows us to perform approximate Bayesian inference in latent Gaussian models such as generalised linear mixed models and spatial and spatio-temporal models. This approach can be used in combination with the stochastic partial differential equation (SPDE) approach to analyse geostatistical data that have been collected at particular sites to predict the spatial process underlying the data as well as to assess the effect of covariates and model other sources of variability. Here we demonstrate how to fit a Bayesian spatial model using the INLA and SPDE approaches applied to freely available data of malaria prevalence and risk factors in Mozambique. We show how to fit and interpret the model to predict malaria risk and assess the effect of covariates using the R-INLA package, and provide the R code necessary to reproduce the results or to use it in other spatial applications.


Subject(s)
Malaria , Bayes Theorem , Humans , Malaria/epidemiology , Markov Chains , Models, Statistical , Mozambique/epidemiology , Normal Distribution
3.
Proc Math Phys Eng Sci ; 477(2247): 20200855, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35153550

ABSTRACT

The year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL
...