Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955352

ABSTRACT

We show that the structure of multifilament MgB2 wires made by the powder-in-tube (PIT) method can be texturized by annealing the structure under high isostatic pressure. Our results show that we obtained continuous fibers with a uniform diameter of 250 nm in all 36 filaments, a small grain size of approximately 50 nm and a high density of the superconducting material. These results contribute to a significant improvement in the critical current density in high magnetic fields, e.g., 100 A/mm2 at 14 T and 4.2 K.

2.
Materials (Basel) ; 14(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34576377

ABSTRACT

Annealing undoped MgB2 wires under high isostatic pressure (HIP) increases transport critical current density (Jtc) by 10% at 4.2 K in range magnetic fields from 4 T to 12 T and significantly increases Jtc by 25% in range magnetic fields from 2 T to 4 T and does not increase Jtc above 4 T at 20 K. Further research shows that a large amount of 10% SiC admixture and thermal treatment under a high isostatic pressure of 1 GPa significantly increases the Jtc by 40% at 4.2 K in magnetic fields above 6 T and reduces Jtc by one order at 20 K in MgB2 wires. Additionally, our research showed that heat treatment under high isostatic pressure is more evident in wires with smaller diameters, as it greatly increases the density of MgB2 material and the number of connections between grains compared to MgB2 wires with larger diameters, but only during the Mg solid-state reaction. In addition, our study indicates that smaller wire diameters and high isostatic pressure do not lead to a higher density of MgB2 material and more connections between grains during the liquid-state Mg reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...