Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 61(4): 828-835, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27787213

ABSTRACT

The pace of anti-malarial drug discovery is often impeded due to the lack of tools to determine the cidality of compounds in vitro. An anti-malarial compound must have a cidal mode of action, i.e. kill parasites, in order to quickly reduce parasite load. A static compound that merely inhibits growth must be identified early on in the discovery cascade. In this paper, we describe a high-throughput fluorescent assay for determination of the cidality of an anti-malarial compound. The assay works on the principle that cultures treated with a static compound will exhibit re-growth while treatment with a cidal compound leads to a marked reduction in parasite number. Parasite cultures are treated with the drug for 48 or 72 h following which the drug is washed off. Cultures are allowed to recover in drug-free media for 72 h and DNA content estimated using the fluorescent dye SyBR Green I. Following estimation of IC50 and IC99 values, we find that the IC99/IC50 ratio is a reliable indicator of the cidality of a compound. Cidal compounds like artemisinin and chloroquine display an IC99/IC50 ratio <5 while the ratio for a static compound like atovaquone is <5. This correlation holds true for various anti-malarial drugs with known modes of action. Importantly, the IC99/IC50 ratio drops to <5 when a compound becomes cidal in action with longer duration of treatment. The assay is robust, reliable and provides a fast and effective means for prioritizing cidal compounds for progression along the drug discovery cascade.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/physiology , Benzothiazoles , Diamines , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Optical Imaging , Organic Chemicals , Quinolines
2.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
3.
Gene ; 555(2): 269-76, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25447907

ABSTRACT

Glutamate racemase (MurI) converts l-glutamate into d-glutamate which is an essential component of peptidoglycan in bacteria. The gene encoding glutamate racemase, murI has been shown to be essential for the growth of a number of bacterial species including Escherichia coli. However, in some Gram-positive species d-amino acid transaminase (Dat) can also convert l-glutamate into d-glutamate thus rendering MurI non-essential for growth. In a recent study the murI gene of Mycobacterium tuberculosis was shown to be non-essential. As d-glutamate is an essential component of peptidoglycan of M. tuberculosis, either Dat or MurI has to be essential for its survival. Since, a Dat encoding gene has not been reported in M. tuberculosis genome sequence, the reported non-essentiality of murI was unexplainable. In order to resolve this dilemma we tried to knockout murI in the presence of single and two copies of murI, in wild type and merodiploid strains respectively. It was found that murI could not be inactivated in the wild type background indicating that it could be an essential gene. Also, inactivation of murI could not be achieved in the presence of externally supplied d-glutamate in 7H9 medium suggesting that M. tuberculosis is unable to take up d-glutamate under the conditions tested. However we could generate murI knockout strains at high frequency when two copies of the gene were present indicating that at least one murI gene is required for cellular viability. The essential nature of MurI in M. tuberculosis H37Rv suggests that it could be a potential drug target.


Subject(s)
Amino Acid Isomerases/metabolism , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Amino Acid Isomerases/genetics , Amino-Acid N-Acetyltransferase/genetics , Bacterial Proteins/genetics , Cell Wall/chemistry , Computational Biology , Electroporation , Gene Deletion , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Genetic , Mutation , Mycobacterium tuberculosis/genetics , Peptidoglycan/chemistry , Promoter Regions, Genetic , Recombination, Genetic , Transgenes
4.
Gene ; 550(1): 110-6, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25128581

ABSTRACT

Most bacteria are able to generate sufficient amounts of ATP from substrate level phosphorylation, thus rendering the respiratory oxidative phosphorylation non-critical. In mycobacteria, including Mycobacterium tuberculosis, ATP generation by oxidative phosphorylation is an essential process. Of the two types of NADH dehydrogenases (type I and type II), the type II NADH dehydrogenase (Ndh) which is inhibited by phenothiazines has been thought to be essential. In M. tuberculosis there are two Ndh isozymes (Ndh and NdhA) coded by ndh and ndhA genes respectively. Ndh and NdhA share a high degree of amino acid similarity. Both the enzymes have been shown to be enzymatically active and are inhibited by phenothiazines, suggesting a functional similarity between the two. We attempted gene knockout of ndh and ndhA genes in wild type and merodiploid backgrounds. It was found that ndh gene cannot be inactivated in a wild type background, though it was possible to do so when an additional copy of ndh was provided. This showed that in spite of its apparent functional equivalence, NdhA cannot complement the loss of Ndh in M. tuberculosis. We also showed that NdhA is not essential in M. tuberculosis as the ndhA gene could be deleted in a wild type strain of M. tuberculosis without causing any adverse effects in vitro. RT-PCR analysis of in vitro grown M. tuberculosis showed that ndhA gene is actively transcribed. This study suggests that despite being biochemically similar, Ndh and NdhA play different roles in the physiology of M. tuberculosis.


Subject(s)
Bacterial Proteins/genetics , Microbial Viability/genetics , Mycobacterium tuberculosis/genetics , NADH Dehydrogenase/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Knockout Techniques , Isoenzymes/genetics , Isoenzymes/metabolism , Mycobacterium tuberculosis/enzymology , NADH Dehydrogenase/metabolism , Phenothiazines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
5.
J Med Chem ; 57(15): 6642-52, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25007124

ABSTRACT

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


Subject(s)
Aminopyridines/chemistry , Antimalarials/chemistry , Benzimidazoles/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Hepatocytes/metabolism , Humans , Malaria/drug therapy , Malaria/mortality , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
6.
J Med Chem ; 57(13): 5702-13, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24914738

ABSTRACT

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Subject(s)
Antimalarials/pharmacology , Benzimidazoles/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Mice , Small Molecule Libraries , Structure-Activity Relationship
7.
J Med Chem ; 57(15): 6572-82, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24967731

ABSTRACT

Diarylthiazole (DAT), a hit from diversity screening, was found to have potent antimycobacterial activity against Mycobacterium tuberculosis (Mtb). In a systematic medicinal chemistry exploration, we demonstrated chemical opportunities to optimize the potency and physicochemical properties. The effort led to more than 10 compounds with submicromolar MICs and desirable physicochemical properties. The potent antimycobacterial activity, in conjunction with low molecular weight, made the series an attractive lead (antibacterial ligand efficiency (ALE)>0.4). The series exhibited excellent bactericidal activity and was active against drug-sensitive and resistant Mtb. Mutational analysis showed that mutations in prrB impart resistance to DAT compounds but not to reference drugs tested. The sensor kinase PrrB belongs to the PrrBA two component system and is potentially the target for DAT. PrrBA is a conserved, essential regulatory mechanism in Mtb and has been shown to have a role in virulence and metabolic adaptation to stress. Hence, DATs provide an opportunity to understand a completely new target system for antimycobacterial drug discovery.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Protein Kinases/metabolism , Thiazoles/chemistry , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , High-Throughput Screening Assays , Humans , Mice , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Small Molecule Libraries , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...