Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 33(5): 3488-3500, 2023 May.
Article in English | MEDLINE | ID: mdl-36512045

ABSTRACT

OBJECTIVES: Evaluation of the feasibility of using cardiovascular magnetic resonance (CMR) radiomics in the prediction of incident atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), and stroke using machine learning techniques. METHODS: We identified participants from the UK Biobank who experienced incident AF, HF, MI, or stroke during the continuous longitudinal follow-up. The CMR indices and the vascular risk factors (VRFs) as well as the CMR images were obtained for each participant. Three-segmented regions of interest (ROIs) were computed: right ventricle cavity, left ventricle (LV) cavity, and LV myocardium in end-systole and end-diastole phases. Radiomics features were extracted from the 3D volumes of the ROIs. Seven integrative models were built for each incident cardiovascular disease (CVD) as an outcome. Each model was built with VRF, CMR indices, and radiomics features and a combination of them. Support vector machine was used for classification. To assess the model performance, the accuracy, sensitivity, specificity, and AUC were reported. RESULTS: AF prediction model using the VRF+CMR+Rad model (accuracy: 0.71, AUC 0.76) obtained the best result. However, the AUC was similar to the VRF+Rad model. HF showed the most significant improvement with the inclusion of CMR metrics (VRF+CMR+Rad: 0.79, AUC 0.84). Moreover, adding only the radiomics features to the VRF reached an almost similarly good performance (VRF+Rad: accuracy 0.77, AUC 0.83). Prediction models looking into incident MI and stroke reached slightly smaller improvement. CONCLUSIONS: Radiomics features may provide incremental predictive value over VRF and CMR indices in the prediction of incident CVDs. KEY POINTS: • Prediction of incident atrial fibrillation, heart failure, stroke, and myocardial infarction using machine learning techniques. • CMR radiomics, vascular risk factors, and standard CMR indices will be considered in the machine learning models. • The experiments show that radiomics features can provide incremental predictive value over VRF and CMR indices in the prediction of incident cardiovascular diseases.


Subject(s)
Atrial Fibrillation , Heart Failure , Myocardial Infarction , Stroke , Humans , Heart Failure/diagnostic imaging , Machine Learning , Stroke/diagnostic imaging , Magnetic Resonance Spectroscopy , Myocardial Infarction/diagnostic imaging
2.
Sci Rep ; 12(1): 18876, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344532

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.


Subject(s)
Atrial Fibrillation , Stroke , Male , Female , Humans , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/complications , Electrocardiography/methods , Stroke/complications , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...