Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(13): 134501, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33034484

ABSTRACT

We report on the observation of surface gravity-wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity-wave turbulence, an upscale transfer is observed, interpreted as the inverse cascade of weak turbulence theory. A steady state is achieved when the inverse cascade reaches a scale in between the forcing wavelength and the basin size, but far from the latter. This inverse cascade saturation, which depends on the wave steepness, is probably due to the emergence of nonlinear dissipative structures such as sharp-crested waves.

2.
Phys Rev Lett ; 101(7): 074502, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18764540

ABSTRACT

We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow.

3.
Phys Rev Lett ; 100(25): 254504, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18643666

ABSTRACT

We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R{lambda}in[120:740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, pointing towards the existence of a universal behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is found to capture the intermittency of velocity statistics over the whole three decades of temporal scales investigated here.

4.
Phys Rev Lett ; 98(4): 044502, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17358779

ABSTRACT

We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.

5.
Phys Rev Lett ; 97(7): 074501, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026233

ABSTRACT

We study the effect of a turbulent flow of liquid sodium generated in the von Kármán geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.

6.
Phys Rev Lett ; 95(6): 064501, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090958

ABSTRACT

We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the dynamic case); (ii) the time evolution of tracers advected by a frozen turbulent field (the static case); (iii) the evolution in time of the velocity recorded at a fixed location in an evolving Eulerian velocity field, as it would be measured by a local probe (referred to as the virtual probe case). We observe that the static case and the virtual probe cases share many properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is clearly different; it bears the signature of the global dynamics of the flow.

7.
Phys Rev Lett ; 91(21): 214502, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683309

ABSTRACT

We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation data. We show that this approach reproduces the shape evolution of velocity increment probability density functions from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from h(min) approximately 0.18 to h(max) approximately 1.

8.
Phys Rev Lett ; 89(25): 254502, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12484891

ABSTRACT

Using a new experimental technique, based on the scattering of ultrasounds, we perform a direct measurement of particle velocities, in a fully turbulent flow. This allows us to approach intermittency in turbulence from a dynamical point of view and to analyze the Lagrangian velocity fluctuations in the framework of random walks. We find experimentally that the elementary steps in the walk have random uncorrelated directions but a magnitude that is extremely long range correlated in time. Theoretically, a Langevin equation is proposed and shown to account for the observed one- and two-point statistics. This approach connects intermittency to the dynamics of the flow.

9.
Phys Rev Lett ; 87(21): 214501, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11736341

ABSTRACT

We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particle at a turbulent Reynolds number R(lambda) = 740, with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form E(L)(omega) = u(2)(rms)T(L)/[1+(T(L)omega)(2)], in agreement with a Kolmogorov-like scaling in the inertial range. The probability density functions of the velocity time increments display an intermittency which is more pronounced than that of the corresponding Eulerian spatial increments.

SELECTION OF CITATIONS
SEARCH DETAIL
...