Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 51(8): 417-23, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12202902

ABSTRACT

A promising strategy for cancer treatment is adoptive gene therapy/immunotherapy by genetically modifying T cells with a chimeric T cell receptor (cTCR). When transduced T cells (T-bodies) specifically bind to tumor antigens through cTCR, they will become cytotoxic T lymphocytes (CTL) and lyse the tumor cells in a non-major histocompatibility complex (MHC)-restricted manner. Both the FcR gamma-chain and the TCR zeta-chain have been used to construct such cTCR, and both have shown specific cytolytic functions against tumor cells. However, most researchers believe that the zeta-chain generates stronger cytolytic activities against tumor than the gamma-chain and therefore would be a better candidate for cTCR construction. On the other hand, because of the lack of costimulation signaling in such constructs, the T-body might cause activation-induced T cell death (AICD) when bound to tumor antigens. Therefore, one can argue that the gamma-chain might generate less AICD than the zeta-chain because the gamma-chain has only one immunoreceptor tyrosine-based activation motif (ITAM), and the cytolytic activities can be therefore recycled. Two cTCR, GAHgamma and GAHzeta, were constructed and evaluated for cytokine production, specific cytolytic function and AICD in T-bodies after exposure to tumor cells. Using EGP-2-positive LS174T colorectal carcinoma cells as targets, there was no substantial difference observed between a gamma-chain or zeta-chain as the T-body signaling moiety in terms of specific cytolytic functions and induced cytokine production. This paper also demonstrates that, in the absence of a costimulation system, tumor antigen may not trigger apoptosis of T cells transduced with a cTCR carrying either an FcR gamma-chain or a TCR zeta-chain. These observations challenge current ideas about the role of ITAM in T cell activation.


Subject(s)
Apoptosis , Genetic Therapy/methods , Immunotherapy/methods , Lymphocyte Activation , Membrane Proteins/chemistry , Neoplasms/therapy , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Receptors, IgG/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Motifs , Cytokines/biosynthesis , DNA/metabolism , Genetic Vectors , Humans , Models, Genetic , Phenotype , Polymerase Chain Reaction , Recombinant Fusion Proteins/metabolism , Retroviridae/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...