Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Solid Earth ; 128(1): e2022JB024725, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37035576

ABSTRACT

Seismic velocities in rocks are highly sensitive to changes in permanent deformation and fluid content. The temporal variation of seismic velocity during the preparation phase of earthquakes has been well documented in laboratories but rarely observed in nature. It has been recently found that some anthropogenic, high-frequency (>1 Hz) seismic sources are powerful enough to generate body waves that travel down to a few kilometers and can be used to monitor fault zones at seismogenic depth. Anthropogenic seismic sources typically have fixed spatial distribution and provide new perspectives for velocity monitoring. In this work, we propose a systematic workflow to seek such powerful seismic sources in a rapid and straightforward manner. We tackle the problem from a statistical point of view, considering that persistent, powerful seismic sources yield highly coherent correlation functions (CFs) between pairs of seismic sensors. The algorithm is tested in California and Japan. Multiple sites close to fault zones show high-frequency CFs stable for an extended period of time. These findings have great potential for monitoring fault zones, including the San Jacinto Fault and the Ridgecrest area in Southern California, Napa in Northern California, and faults in central Japan. However, extra steps, such as beamforming or polarization analysis, are required to determine the dominant seismic sources and study the source characteristics, which are crucial to interpreting the velocity monitoring results. Train tremors identified by the present approach have been successfully used for seismic velocity monitoring of the San Jacinto Fault in previous studies.

2.
Geophys Res Lett ; 49(19): e2022GL098509, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36582260

ABSTRACT

Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low-frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high-frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two-month-long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow-slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow-slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.

3.
Geophys Res Lett ; 47(17): e2020GL088563, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-33132459

ABSTRACT

Although moderate-size earthquakes are poorly studied by lack of near-fault observations, they can provide key information about larger damaging earthquakes. Here we propose a new approach, inspired by double-difference relocation, that uses high-coherency waveforms recorded at neighboring sensors, to study the preparation phase and dynamics of moderate-size earthquakes. We validate this technique by analyzing the 2016, M w 5.2 Borrego Springs earthquake in Southern California and find consistent rupture velocities of 2 km/s highlighting two main rupture asperities. The analysis of the 2019, Ml5.2 Le Teil earthquake in France reveals slow nucleation at depth that migrates to the surface and propagates northward with a velocity of ∼2.8 km/s, highlighting two main rupture events also imaged by InSAR. By providing unprecedented resolution in our observation of the rupture dynamics, this approach will be useful in better understanding the preparation phase and rupture of both tectonic and induced earthquakes.

4.
Geophys Res Lett ; 46(16): 9529-9536, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31866700

ABSTRACT

Laboratory experiments report that detectable seismic velocity changes should occur in the vicinity of fault zones prior to earthquakes. However, operating permanent active seismic sources to monitor natural faults at seismogenic depth is found to be nearly impossible to achieve. We show that seismic noise generated by vehicle traffic, and especially heavy freight trains, can be turned into a powerful repetitive seismic source to continuously probe the Earth's crust at a few kilometers depth. Results of an exploratory seismic experiment in Southern California demonstrate that correlations of train-generated seismic signals allow daily reconstruction of direct P body waves probing the San Jacinto Fault down to 4-km depth. This new approach may facilitate monitoring most of the San Andreas Fault system using the railway and highway network of California.

5.
Science ; 346(6209): 617-9, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25359969

ABSTRACT

An understanding of the formation of large magmatic reservoirs is a key issue for the evaluation of possible strong volcanic eruptions in the future. We estimated the size and level of maturity of one of the largest volcanic reservoirs, based on radial seismic anisotropy. We used ambient-noise seismic tomography below the Toba caldera (in northern Sumatra) to observe the anisotropy that we interpret as the expression of a fine-scale layering caused by the presence of many partially molten sills in the crust below 7 kilometers. This result demonstrates that the magmatic reservoirs of present (non-eroded) supervolcanoes can be formed as large sill complexes and supports the concept of the long-term incremental evolution of magma bodies that lead to the largest volcanic eruptions.

SELECTION OF CITATIONS
SEARCH DETAIL
...