Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(1): 1097-1108, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643463

ABSTRACT

The valorization of lignin into value-added products by oxidative conversion is a widely studied strategy. However, in many cases, this approach has limited scope for integration into industrial processes. The objective of our work is to maximize overall lignin utilization to produce diverse value-added products with a focus on integration in the existing industrial pulp and paper processes. The utilization of the sequential oxidation strategy using oxygen and ozone resulted in kraft lignin with a marked improvement in carboxyl content and also allowed the formation of vanillin and vanillic acid in the oxygen stage. The sequentially oxidized lignin (OxL-COOH) was then cured with poly(ethylene glycol) diglycidyl ether (PEG-epoxy) to form high-lignin-content (>48 wt %) vitrimers with high thermal stability, fast relaxation, swelling, and self-healing due to the presence of bond-exchangeable cross-linked networks. Overall, this study provides a novel approach for the multidimensional valorization of lignin and demonstrates an integrated approach for kraft lignin valorization in the pulp and paper industry.

2.
Int J Biol Macromol ; 183: 1505-1513, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34023372

ABSTRACT

The retro-aldol reaction is one of the key steps involved in the oxidative conversion of lignin to aromatic aldehydes and acids. In principle, the retro-aldol reaction can proceed in the absence of oxygen. In this work, a new approach based on the influence of oxygen on the oxidation of lignin was investigated. In this approach, the duration of oxygen charged during the reaction was optimized to, for the first time, improve the yield of aromatic aldehydes and acids. The effect of reaction chemistry, time, temperature, and lignin feedstock plays a key role on the yield of aromatic aldehydes and acids. At 140 °C, oxidation of softwood Lignoboost kraft lignin for 40 min results in combined maximum yield of 5.17% w/w of vanillin and vanillic acid. In comparison, using the new approach in which oxygen was charged for only 20 min during the 40 min reaction improved this yield considerably to 6.95%. Further, yield improvement was obtained when applying this approach to different lignin feedstocks. Oxidation also increased the carboxyl content in lignin from 0.49 mmol/g to 1.41 mmol/g which represents a marked improvement. The current study provides new evidence showing that the oxidation reaction is a crucial pathway for lignin valorization.


Subject(s)
Aldehydes/chemistry , Benzaldehydes/chemistry , Lignin/chemistry , Vanillic Acid/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...