Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(6): e202400496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700369

ABSTRACT

Tuberculosis remains a global health threat, with increasing infection rates and mortality despite existing anti-TB drugs. The present work focuses on the research findings regarding the development and evaluation of thiadiazole-linked thiazole derivatives as potential anti-tuberculosis agents. We present the synthesis data and confirm the compound structures using spectroscopic techniques. The current study reports twelve thiazole-thiadiazole compounds (5 a-5 l) for their anti-tuberculosis and related bioactivities. This paper emphasizes compounds 5 g, 5 i, and 5 l, which exhibited promising MIC values, leading to further in silico and interaction analysis. Pharmacophore mapping data included in the present analysis identified tubercular ThyX as potential drug targets. The compounds were evaluated for anti-tubercular activity using standard methods, revealing significant MIC values, particularly compound 5 l, with the best MIC value of 7.1285 µg/ml. Compounds 5 g and 5 i also demonstrated moderate to good MIC values against M. tuberculosis (H37Ra). Structural inspection of the docked poses revealed interactions such as hydrogen bonds, halogen bonds, and interactions containing Pi electron cloud, shedding light on conserved interactions with residues like Arg 95, Cys 43, His 69, and Arg 87 from the tubercular ThyX enzyme.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Thiadiazoles , Thiazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Molecular Structure , Humans
2.
Bioorg Chem ; 115: 105259, 2021 10.
Article in English | MEDLINE | ID: mdl-34426144

ABSTRACT

In this study, we report the expeditious synthesis of ten new antifungal and antioxidant agents containing heterocyclic linked 7-arylidene indanone moiety. The solvent-free microwave technique, ample substrate scope, superfast synthesis, and very simple operation are noteworthy features of this protocol. Antifungal activities of the newly synthesized compounds were evaluated against four fungal strains namely Rhizophus oryzae, Mucor mucido, Aspergillus niger, and Candida albicans. Most of the compounds were shown strong inhibition of the investigated fungal agents. In vitro, antioxidant potential against DPPH and OH radicals affirmed that the synthesized compounds are good to excellent radicals scavenging agents. The cytotoxicity data of the synthesized compounds towards HL-60 cells uncovered that the synthesized compounds display very low to negligible cytotoxicity. The structural and quantum chemical parameters of the synthesized compounds were explored by employing density functional theory (DFT) at B3LYP functional using 6-311G(d,p) basis set. The compound 3a is discussed in detail for the theoretical and experimental correlation. Time-dependent density functional theory (TD-DFT) at CAM-B3LYP functional with 6-311G(d,p) basis set was used for the electronic absorption study in the gas phase and indichloromethane and benzene solvents. The UV-Visible absorption peaks and fundamental vibrational wavenumbers were computed and a good agreement between observed and theoretical results has been achieved. From the DFT and antifungal activity correlation, it has been found that the 7-heteroarylidene indanones with more stabilized LUMO energy levels display good antifungal potential.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Heterocyclic Compounds/pharmacology , Indans/pharmacology , Microwaves , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Aspergillus niger/drug effects , Candida albicans/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Indans/chemical synthesis , Indans/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mucor/drug effects , Oryza/drug effects , Structure-Activity Relationship
3.
Comput Biol Chem ; 61: 86-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26844536

ABSTRACT

Searching novel, safe and effective anti-inflammatory agents has remained an evolving research enquiry in the mainstream of inflammatory disorders. In the present investigation series of thiazoles bearing pyrazole as a possible pharmacophore were synthesized and assessed for their anti inflammatory activity using in vitro and in vivo methods. In order to decipher the possible anti-inflammatory mechanism of action of the synthesized compounds, cyclooxygenase I and II (COX-I and COX-II) inhibition assays were also carried out. The results obtained clearly focus the significance of compounds 5d, 5h and 5i as selective COX-II inhibitors. Moreover, compound 5h was also identified as a lead molecule for inhibition of the carrageenin induced rat paw edema in animal model studies. Molecular docking results revealed significant interactions of the test compounds with the active site of COX-II, which perhaps can be explored for design and development of novel COX-II selective anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Pyrazoles/chemistry , Thiazoles/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Male , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...