Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 116(4): 041301, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26871319

ABSTRACT

We present significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range [0.1, 0.33]. By dividing the 8,648 clusters into two subsamples based on the average member galaxy separation from the cluster center, we first show that the two subsamples have very similar halo mass of M_{200m}≃1.9×10^{14} h^{-1}M_{⊙} based on the weak lensing signals at small radii R≲10 h^{-1}Mpc. However, their halo bias inferred from both the large-scale weak lensing and the projected autocorrelation functions differs by a factor of ∼1.5, which is a signature of assembly bias. The same bias hypothesis for the two subsamples is excluded at 2.5σ in the weak lensing and 4.4σ in the autocorrelation data, respectively. This result could bring a significant impact on both galaxy evolution and precision cosmology.

2.
Science ; 344(6182): 396-9, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24763586

ABSTRACT

Objects of known brightness, like type Ia supernovae (SNIa), can be used to measure distances. If a massive object warps spacetime to form multiple images of a background SNIa, a direct test of cosmic expansion is also possible. However, these lensing events must first be distinguished from other rare phenomena. Recently, a supernova was found to shine much brighter than normal for its distance, which resulted in a debate: Was it a new type of superluminous supernova or a normal SNIa magnified by a hidden gravitational lens? Here, we report that a spectrum obtained after the supernova faded away shows the presence of a foreground galaxy-the first found to strongly magnify a SNIa. We discuss how more lensed SNIa can be found than previously predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...