Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ital J Pediatr ; 49(1): 84, 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37455305

ABSTRACT

BACKGROUND: Congenital dyserythropoietic anemias (CDAs) are a very rare and heterogeneous group of disorders characterized by ineffective erythropoiesis. CDA II is caused by mutations in the SEC23B gene. The most common mutation reported in India is c.1385 A > G, p.Y462C. There is no simple and cost-effective confirmatory diagnostic test available for CDA, and therefore, many patients remain undiagnosed. High-resolution melting curve (HRM) analysis is a polymerase chain reaction (PCR) based technique applied to identify genetic differences and scan nucleic acid sequences. HRM can be used to rapidly screen the common mutation causing CDA II in the Indian population. Thus, we studied the use of High-Resolution Melting Curve Analysis to detect common mutation causing CDA II in the Indian population. METHOD: 11 patients having SEC23B (Y462C) mutation causing CDA II are considered for this study. HRM was used to check the presence of Y462C mutation. To verify the accuracy of the HRM analysis, we compared HRM results with the results of Sanger sequencing. This helped us to confirm the diagnosis. RESULTS: We have described the clinical, hematological, and genetic data of eleven patients suffering from CDAII. According to HRM and Sanger sequencing, a homozygous SEC23B (Y462C) mutation was present in all patients, whereas a heterozygous Y462C mutation was present in their parents. CONCLUSION: Our data showed that High-Resolution Melting (HRM) analysis could be used to rapidly screen common SEC23B mutation that causes CDA II in the Indian population.


Subject(s)
Anemia, Dyserythropoietic, Congenital , Humans , Anemia, Dyserythropoietic, Congenital/diagnosis , Anemia, Dyserythropoietic, Congenital/genetics , Mutation , Polymerase Chain Reaction , Vesicular Transport Proteins/genetics
2.
Ann Hematol ; 102(5): 1029-1036, 2023 May.
Article in English | MEDLINE | ID: mdl-36892591

ABSTRACT

Pyruvate kinase deficiency (PKD) is an autosomal recessive condition, caused due to homozygous or compound heterozygous mutation in the PKLR gene resulting in non-spherocytic hereditary hemolytic anemia. Clinical manifestations in PKD patients vary from moderate to severe lifelong hemolytic anemia either requiring neonatal exchange transfusion or blood transfusion support. Measuring PK enzyme activity is the gold standard approach for diagnosis but residual activity must be related to the increased reticulocyte count. The confirmatory diagnosis is provided by PKLR gene sequencing by conventional as well as targeted next-generation sequencing involving genes associated with enzymopathies, membranopathies, hemoglobinopathies, and bone marrow failure disorders. In this study, we report the mutational landscape of 45 unrelated PK deficiency cases from India. The genetic sequencing of PKLR revealed 40 variants comprising 34 Missense Mutations (MM), 2 Nonsense Mutations (NM), 1 Splice site, 1 Intronic, 1 Insertion, and 1 Large Base Deletion. The 17 novel variants identified in this study are A115E, R116P, A423G, K313I, E315G, E318K, L327P, M377L, A423E, R449G, H507Q, E538K, G563S, c.507 + 1 G > C, c.801_802 ins A (p.Asp268ArgfsTer48), IVS9dsA-T + 3, and one large base deletion. In combination with previous reports on PK deficiency, we suggest c.880G > A, c.943G > A, c.994G > A, c.1456C > T, c.1529G > A are the most frequently observed mutations in India. This study expands the phenotypic and molecular spectrum of PKLR gene disorders and also emphasizes the importance of combining both targeted next-generation sequencing with bioinformatics analysis and detailed clinical evaluation to elaborate a more accurate diagnosis and correct diagnosis for transfusion dependant hemolytic anemia in a cohort of the Indian population.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia, Hemolytic , Humans , Infant, Newborn , Anemia, Hemolytic/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , High-Throughput Nucleotide Sequencing , Mutation , Pyruvate Kinase/genetics
3.
Mol Genet Genomics ; 298(2): 427-439, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598564

ABSTRACT

Hereditary Spherocytosis (HS) is a common cause of hemolytic anemia varying from mild to severe hemolysis due to defects in red cell membrane protein genes, namely ANK1, SPTB, SPTA1, SLC4A1, and EPB42. These genes are considerably very large spaning 40-50 exons making gene-by-gene analysis costly and laborious by conventional methods. In this study, we explored 26 HS patients harboring 21 ANK1 variants identified by next-generation sequencing (NGS), characteristics and spectrum of the detected ANK1variants were analyzed in this study. Clinically, all the HS patients showed moderate to severe transfusion-dependent hemolytic anemia, some requiring splenectomy. We identified 13 novel and 8 reported variants, mainly 9 frameshifts, 2 missense, 6 nonsense, and 4 splice site ANK1 variants, using NGS technology. Frameshifts were remarkably the most common variant type seen in Indian HS patients with ANK1 gene defects. We have also explored expression levels of red cell membrane ankyrin protein by flow cytometry in 14 HS patients with ANK1 gene defects and a significant reduction in ankyrin protein expression has been found. This report mainly illustrates the molecular and phenotypic heterogeneity of ANK1 variants causing HS in Indian patients. Ankyrin-1 mutations are a significant cause of loss of function in dominant HS in the Indian population. Comprehensive genetic and phenotypic evaluation assists in implementing the knowledge of genetic patterns and spectrum of ANK1 gene variants, providing molecular support for HS diagnosis.


Subject(s)
Ankyrins , Spherocytosis, Hereditary , Humans , Ankyrins/genetics , Ankyrins/metabolism , High-Throughput Nucleotide Sequencing , Membrane Proteins/genetics , Mutation , Spherocytosis, Hereditary/genetics , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/metabolism
4.
Gene ; 769: 145241, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33068675

ABSTRACT

INTRODUCTION: Although distinctive, distal renal tubular acidosis (dRTA) and Hereditary Spherocytosis (HS) shares a common protein, the anion exchanger1 (AE1) encoded by SLC4A1gene. In spite of this, the co-existence of dRTA and HS has rarely been observed. To date, 23 mutations have been identified in SLC4A1 gene causing both autosomal recessive (AR) and autosomal dominant (AD) forms of dRTA. METHODS: We have assessed the applicability of the High Resolution Melting curve (HRM) method for the detection of SLC4A1 (A858D) mutation in 12 Indian families having AR dRTA coupled with HS. The reliability of the HRM analysis was verified by comparing the results of the HRM method with those of conventional methods such as Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism (PCR-RFLP) and Sanger sequencing thereby confirming the diagnosis. RESULTS: We here described the clinical, hematological and genetic data of 16 individuals from 12 families having AR dRTA coupled with HS. All patients carried homozygous SLC4A1 (A858D) mutation, whereas their family members had heterozygous A858D obtained by HRM analysis and confirmed by RFLP and Sanger sequencing. CONCLUSION: Our data indicates that a missense mutation of A858D in SLC4A1 gene is the most common cause of dRTA coupled with HS in the Indian population. HRM analysis can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in the Indian population.


Subject(s)
Acidosis, Renal Tubular/genetics , Anion Exchange Protein 1, Erythrocyte/genetics , Mutation, Missense , Spherocytosis, Hereditary/complications , Acidosis, Renal Tubular/complications , Adolescent , Child , Child, Preschool , Female , Humans , India , Infant , Male , Pedigree , Young Adult
5.
Ann Hematol ; 99(4): 715-727, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32112123

ABSTRACT

Hereditary xerocytosis (HX), also known as dehydrated stomatocytosis (DHSt) is a dominantly inherited genetic disorder exhibiting red cell membrane dehydration caused by the loss of the monovalent cation K+ and water. Variants in mechanosensitive Piezo ionic channels of the PIEZO1 gene are the primary cause of HX. We have utilized high throughput and highly precise next-generation sequencing (NGS) to make a diagnosis and examine the genotype-phenotype relationship in inflexible HX cases. Seven unrelated patients with unexplained hemolytic anemia were scrutinized with a panel probing 8000 genes related to congenital anemia. Targeted next-generation sequencing identified 8 missense variants in the PIEZO1 gene in 7 unrelated Indian patients. Three of the 8 variants are novel (c.1795G > C, c.2915G > A, c.7372 T > C) and the remaining five (c.4082A > G, c.6829C > A, c.7374C > G, c.7381G > A, c.7483_7488dup) are previously reported. The variants have been validated by Sanger sequencing. One patient with autosomal dominant mutation (c.7372 T > C) is associated with iron refractory iron deficiency anemia. Of the 7 patients, one has HX in combination with a novel homozygous variant (c.994G > A) in the PKLR gene causing PK deficiency resulting in severe clinical manifestations with phenotypic variability. In silico prediction using bioinformatics tools were used to study the possible damaging effects of the novel variants. Structural-functional analysis of the novel variants was investigated by molecular modeling software (PyMOL and Swiss PDB). These results encompass the heterogeneous behavior of mechano-sensitive Piezo1 protein observed in HX patients in India. Moreover, NGS imparted a subtle, economical, and quick tool for understanding the genetic cause of undiagnosed cases of congenital hemolytic anemia. NGS grants a potential technology integrating clinical history together with molecular report profiting in such patients and their families.


Subject(s)
Anemia, Hemolytic, Congenital/genetics , Hydrops Fetalis/genetics , Ion Channels/genetics , Mutation, Missense , Adolescent , Amino Acid Sequence , Anemia, Hemolytic, Congenital/blood , Anemia, Hemolytic, Congenital/complications , Anemia, Hemolytic, Congenital/ethnology , Anemia, Iron-Deficiency/genetics , Animals , Child , Child, Preschool , Computer Simulation , Female , Genes, Dominant , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Hydrops Fetalis/blood , Hydrops Fetalis/ethnology , India , Ion Channels/chemistry , Ion Channels/physiology , Iron Overload/etiology , Male , Mice , Models, Molecular , Protein Conformation , Pyruvate Kinase/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship
6.
Cytometry B Clin Cytom ; 98(3): 238-249, 2020 05.
Article in English | MEDLINE | ID: mdl-31750618

ABSTRACT

BACKGROUND: Red cell membranopathies refers to phenotypically and morphologically heterogeneous disorders. High throughput imaging flow cytometry (IFC) combines the speed, sensitivity, and phenotyping abilities of flow cytometry with the detailed imagery and functional insights of microscopy to produce high content image analysis with quantitative analysis. We have evaluated the applications of IFC to examine both the morphology as well as fluorescence signal intensity in red cell membranopathies. METHODS: Fluorescence intensity of eosin-5-maleimide (EMA) labeled red cells was measured for diagnosis of RBC membrane protein defect on Amnis ImageStreamX followed by Image analysis on IDEAS software to study features such as circularity and shape ratio. RESULTS: The hereditary spherocytosis (HS) group showed significantly decreased MFI (52,800 ± 9,100) than normal controls (81,100 ± 4,700) (p < .05) whereas non-HS showed 78,300 ± 9,900. The shape ratio of hereditary elliptocytosis (HE) was significantly higher (43.8%) than normal controls (14.6%). The circularity score is higher in HS (64.15%) than the normal controls (44.3%) whereas the circularity score was very less in HE (10%) due to the presence of elliptocytes. CONCLUSIONS: The advantages of the IFC over standard flow cytometry is its ability to provide high-content image analysis and measurement of parameters such as circularity and shape ratio allow discriminating red cell membranopathies (HS and HE) due to variations in shape and size. It could be a single, effective, and rapid IFC test for detection and differentiation of red cell membrane disorders in hematology laboratories where an IFC is available.


Subject(s)
Cell Membrane/pathology , Elliptocytosis, Hereditary/diagnosis , Flow Cytometry , Spherocytosis, Hereditary/diagnosis , Adolescent , Adult , Aged , Cell Membrane/ultrastructure , Child , Child, Preschool , Elliptocytosis, Hereditary/pathology , Erythrocytes/pathology , Erythrocytes/ultrastructure , Female , Humans , Infant , Male , Middle Aged , Spherocytosis, Hereditary/pathology , Young Adult
7.
Appl Physiol Nutr Metab ; 42(10): 1054-1063, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28618238

ABSTRACT

Sweeteners have replaced the natural sugars in the food and beverage industry because of many reasons, such as hyperglycemia and cost. Saccharin, sucralose, aspartame and acesulfame-K are the most commonly used sweeteners. In the present study, the abovementioned artificial sweeteners were used to assess their glycating properties by established methods such as browning, fructosamine assay, determination of carbonyl content, protein aggregation, and measurement of fluorescence. Amadori and advanced glycation end products (AGEs) are formed as a result of the interaction between carbonyl groups of reducing sugars and amino groups of proteins and other macromolecules during glycation. The objective of this study was to investigate the influence of artificial sweeteners on the formation of AGEs and protein oxidation in an in vitro model of glucose-mediated protein glycation. The results indicated that the abovementioned artificial sweeteners do not enhance the process of glycation. On the other hand, acesulfame-K was found to have antiglycating potential as it caused decreased formation of Amadori products and AGEs. Further studies are essential in the characterization of Amadori products and AGEs produced as a result of interaction between sweeteners and proteins, which are interfered with by sweeteners. This study is significant in understanding the probable role of artificial sweeteners in the process of glycation and the subsequent effect on macromolecular alteration.


Subject(s)
Glycation End Products, Advanced/metabolism , Protein Carbonylation/drug effects , Sweetening Agents/pharmacology , Thiazines/pharmacology , DNA Damage/drug effects , Electrophoresis, Polyacrylamide Gel , Fructosamine/metabolism , Glucose/pharmacology , Glycosylation , Maillard Reaction , Oxidation-Reduction , Protein Aggregates , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...