Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(15): 1365-1382.e6, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37321213

ABSTRACT

Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.


Subject(s)
Cerebral Cortex , Gene Regulatory Networks , Mice , Animals , Cerebral Cortex/metabolism , Neurons/metabolism , Cell Differentiation/physiology , Neurogenesis/genetics
2.
J Comp Neurol ; 531(12): 1229-1243, 2023 08.
Article in English | MEDLINE | ID: mdl-37125418

ABSTRACT

In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons, including olfactory sensory neurons (OSNs; involved in odor detection), vomeronasal sensory neurons (VSNs; responsible for pheromone sensing), and gonadotropin-releasing hormone (GnRH) neurons that control the hypothalamic-pituitary-gonadal axis. Currently, these three neuronal lineages are usually believed to emerge from uniform pools of progenitors. Here, we found that the homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. We demonstrate that Dbx1 itself is dispensable for neuronal fate specification and global organization of the olfactory sensory system. Using lineage tracing, we characterize the contribution of Dbx1 lineages to OSN, VSN, and GnRH neuron populations and reveal an unexpected degree of diversity. Furthermore, we demonstrate that Dbx1-expressing progenitors remain neurogenic in the absence of the proneural gene Ascl1. Our work therefore points to the existence of distinct neurogenic programs in Dbx1-derived and other olfactory lineages.


Subject(s)
Olfactory Mucosa , Olfactory Receptor Neurons , Mice , Animals , Olfactory Receptor Neurons/metabolism , Transcription Factors/genetics , Gene Expression Regulation , Gonadotropin-Releasing Hormone/metabolism , Homeodomain Proteins/genetics
3.
Cell Rep ; 41(11): 111810, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516767

ABSTRACT

Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.


Subject(s)
Neural Stem Cells , Tumor Suppressor Protein p53 , Geminin/genetics , Geminin/metabolism , Tumor Suppressor Protein p53/metabolism , Ependyma/metabolism , Ependymoglial Cells/metabolism , Neural Stem Cells/metabolism , Cell Differentiation
4.
Development ; 148(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34170322

ABSTRACT

In the developing cerebral cortex, how progenitors that seemingly display limited diversity end up producing a vast array of neurons remains a puzzling question. The prevailing model suggests that temporal maturation of progenitors is a key driver in the diversification of the neuronal output. However, temporal constraints are unlikely to account for all diversity, especially in the ventral and lateral pallium where neuronal types significantly differ from their dorsal neocortical counterparts born at the same time. In this study, we implemented single-cell RNAseq to sample the diversity of progenitors and neurons along the dorso-ventral axis of the early developing pallium. We first identified neuronal types, mapped them on the tissue and determined their origin through genetic tracing. We characterised progenitor diversity and disentangled the gene modules underlying temporal versus spatial regulations of neuronal specification. Finally, we reconstructed the developmental trajectories followed by ventral and dorsal pallial neurons to identify lineage-specific gene waves. Our data suggest a model by which discrete neuronal fate acquisition from a continuous gradient of progenitors results from the superimposition of spatial information and temporal maturation.


Subject(s)
Cerebral Cortex/metabolism , Neurons/metabolism , Transcriptome , Animals , Cell Differentiation/physiology , Cerebral Cortex/pathology , Embryo, Mammalian , Female , Forkhead Transcription Factors , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins , Neurogenesis/physiology , Proto-Oncogene Proteins/metabolism
5.
Development ; 148(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34047341

ABSTRACT

Cajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic lineage tracing has allowed the discovery of their multiple ontogenetic origins, migratory routes, expression of molecular markers and death dynamics. Nowadays, single-cell technologies enable us to appreciate the molecular heterogeneity of CRs with an unprecedented resolution. In this Review, we discuss the morphological, electrophysiological, molecular and genetic criteria allowing the identification of CRs. We further expose the various sources, migration trajectories, developmental functions and death dynamics of CRs. Finally, we demonstrate how the analysis of public transcriptomic datasets allows extraction of the molecular signature of CRs throughout their transient life and consider their heterogeneity within and across species.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Cell Adhesion Molecules, Neuronal , Cell Death , Cerebral Cortex/growth & development , Extracellular Matrix Proteins , Hippocampus/growth & development , Humans , Nerve Tissue Proteins/genetics , Neurogenesis/physiology , Neurons/cytology , Reelin Protein , Serine Endopeptidases , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...