Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(5): 1073-1076, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230293

ABSTRACT

Implantable silicon neural probes with integrated nanophotonic waveguides can deliver patterned dynamic illumination into brain tissue at depth. Here, we introduce neural probes with integrated optical phased arrays and demonstrate optical beam steering in vitro. Beam formation in brain tissue is simulated and characterized. The probes are used for optogenetic stimulation and calcium imaging.


Subject(s)
Optogenetics , Silicon , Brain/diagnostic imaging
2.
Neurophotonics ; 8(2): 025003, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33898636

ABSTRACT

Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses < 16 µ m for propagation distances up to 300 µ m in free space. Imaging areas were as large as ≈ 240 µ m × 490 µ m in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals.

3.
Neuron ; 108(1): 66-92, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33058767

ABSTRACT

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm3 volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/methods , Neurons/pathology , Optical Imaging/methods , Animals , Brain/pathology , Brain/physiology , Computer Simulation , Computer Systems , Functional Neuroimaging/instrumentation , Microchip Analytical Procedures , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/physiology , Optical Imaging/instrumentation , Optics and Photonics , Optogenetics
4.
IEEE Trans Biomed Circuits Syst ; 14(4): 636-645, 2020 08.
Article in English | MEDLINE | ID: mdl-32746353

ABSTRACT

This paper presents a device for time-gated fluorescence imaging in the deep brain, consisting of two on-chip laser diodes and 512 single-photon avalanche diodes (SPADs). The edge-emitting laser diodes deliver fluorescence excitation above the SPAD array, parallel to the imager. In the time domain, laser diode illumination is pulsed and the SPAD is time-gated, allowing a fluorescence excitation rejection up to O.D. 3 at 1 ns of time-gate delay. Each SPAD pixel is masked with Talbot gratings to enable the mapping of 2D array photon counts into a 3D image. The 3D image achieves a resolution of 40, 35, and 73 µm in the x, y, and z directions, respectively, in a noiseless environment, with a maximum frame rate of 50 kilo-frames-per-second. We present measurement results of the spatial and temporal profiles of the dual-pulsed laser diode illumination and of the photon detection characteristics of the SPAD array. Finally, we show the imager's ability to resolve a glass micropipette filled with red fluorescent microspheres. The system's 420 µm-wide cross section allows it to be inserted at arbitrary depths of the brain while achieving a field of view four times larger than fiber endoscopes of equal diameter.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Neuroimaging/instrumentation , Optical Imaging/instrumentation , Electronics, Medical/instrumentation , Equipment Design
5.
IEEE J Solid-State Circuits ; 54(11): 2957-2968, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31798187

ABSTRACT

We present an implantable single photon shank-based imager, monolithically integrated onto a single CMOS IC. The imager comprises of 512 single photon avalanche diodes distributed along two shanks, with a 6-bit depth in-pixel memory and an on-chip digital-to-time converter. To scale down the system to a minimally invasive form factor, we substitute optical filtering and focusing elements with a time-gated, angle-sensitive detection system. The imager computationally reconstructs the position of fluorescent sources within a three-dimensional volume of 3.4 mm × 600 µm × 400 µm.

6.
Neurophotonics ; 4(1): 011002, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27990451

ABSTRACT

Optogenetic methods developed over the past decade enable unprecedented optical activation and silencing of specific neuronal cell types. However, light scattering in neural tissue precludes illuminating areas deep within the brain via free-space optics; this has impeded employing optogenetics universally. Here, we report an approach surmounting this significant limitation. We realize implantable, ultranarrow, silicon-based photonic probes enabling the delivery of complex illumination patterns deep within brain tissue. Our approach combines methods from integrated nanophotonics and microelectromechanical systems, to yield photonic probes that are robust, scalable, and readily producible en masse. Their minute cross sections minimize tissue displacement upon probe implantation. We functionally validate one probe design in vivo with mice expressing channelrhodopsin-2. Highly local optogenetic neural activation is demonstrated by recording the induced response-both by extracellular electrical recordings in the hippocampus and by two-photon functional imaging in the cortex of mice coexpressing GCaMP6.

7.
Neuron ; 89(4): 800-13, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26889811

ABSTRACT

Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer timescale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations.


Subject(s)
CA1 Region, Hippocampal/cytology , Membrane Potentials/physiology , Nonlinear Dynamics , Pyramidal Cells/physiology , Wakefulness/physiology , Animals , Biological Clocks/physiology , Calbindins/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Nerve Net/physiology , Parvalbumins/metabolism , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...