Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(7): e202400388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739854

ABSTRACT

Myrtaceae family includes many species with taxonomic challenges, making it one of the most complex families to identify. This study used DNA barcoding to find molecular markers for species authentication based on the Myrtaceae family's chemical composition and genetic diversity. Essential oils and genetic material were extracted from the leaves of six different species: Eugenia uniflora, E. patrisii, Myrcia splendens, Psidium guajava, P. guineense, and Psidium sp. The samples were analyzed based on compound classes and grouped into two categories. Group I included samples with high amounts of oxygenated sesquiterpenes (3.69-76.05 %) and fatty acid derivatives (0.04-43.59 %), such as E. uniflora, Myrcia splendens, and E. patrisii. Group II included samples P. guajava, P. guineense, and Psidium sp., which had a significant content of monoterpene hydrocarbons (0.69-72.35 %), oxygenated sesquiterpenes (8.06-68.1 %), phenylpropanoids (0.45-22.59 %), and sesquiterpene hydrocarbons (0.27-21.84 %). The PsbA-trnH gene sequences had a high genetic variability, allowing the species to be distinguished. A phylogenetic analysis showed two main clusters with high Bootstrap values corresponding to the subtribes Eugeniineae, Myrciinae, and Pimentinae. The results suggest a weak correlation between genetic and chemical data in these Myrtaceae species.


Subject(s)
DNA Barcoding, Taxonomic , Myrtaceae , Oils, Volatile , Brazil , Oils, Volatile/chemistry , Myrtaceae/chemistry , Myrtaceae/genetics , Plant Leaves/chemistry , DNA, Plant/genetics
2.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067214

ABSTRACT

Detection of t(9;22), and consequent BCR::ABL1 fusion, is still a marker of worse prognosis for acute lymphoblastic leukemia (ALL), with resistance to tyrosine-kinase inhibitor therapy being a major obstacle in the clinical practice for this subset of patients. In this study, we investigated the effectiveness of targeting poly-ADP-ribose polymerase (PARP) in a model of BCR::ABL1 p190+ ALL, the most common isoform to afflict ALL patients, and demonstrated the use of experimental PARP inhibitor (PARPi), AZD2461, as a therapeutic option with cytotoxic capabilities similar to that of imatinib, the current gold standard in medical care. We characterized cytostatic profiles, induced cell death, and biomarker expression modulation utilizing cell models, also providing a comprehensive genome-wide analysis through an aCGH of the model used, and further validated PARP1 differential expression in samples of ALL p190+ patients from local healthcare institutions, as well as in larger cohorts of online and readily available datasets. Overall, we demonstrate the effectiveness of PARPi in the treatment of BCR::ABL1 p190+ ALL cell models and that PARP1 is differentially expressed in patient samples. We hope our findings help expand the characterization of molecular profiles in ALL settings and guide future investigations into novel biomarker detection and pharmacological choices in clinical practice.

3.
Molecules ; 27(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364159

ABSTRACT

Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.


Subject(s)
Cinnamomum , Oils, Volatile , Oils, Volatile/chemistry , Cinnamomum zeylanicum/chemistry , Phylogeny , Cinnamomum/genetics , Cinnamomum/chemistry , Plant Leaves/genetics , Plant Leaves/chemistry , DNA Barcoding, Taxonomic
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 32(5-8): 178-185, 2021.
Article in English | MEDLINE | ID: mdl-37706236

ABSTRACT

The Serra Spanish mackerel, Scomberomorus brasiliensis, is one of the most important fishery resources in the western tropical Atlantic, including northern and eastern Brazil. Despite its economic importance, few genetic markers have been sequenced in this species, and little is known of its population genetics. The present study evaluated the genetic variability of 110 individuals, representing three distinct Brazilian populations (Macapá, Fortaleza and Paranaguá), based on a segment of the mitochondrial Control Region. The sequences revealed high levels of genetic diversity, and suggested marked connectivity among the studied populations. A variable repeat was also found in the 3' portion of the studied Control Region fragment, which may prove useful as a marker in future genetic population studies of S. brasiliensis.

5.
Int J Mol Sci ; 18(5)2017 May 18.
Article in English | MEDLINE | ID: mdl-28524091

ABSTRACT

Ocotea species present economic importance and biological activities attributed to their essential oils (EOs) and extracts. For this reason, various strategies have been developed for their conservation. The chemical compositions of the essential oils and matK DNA sequences of O. caudata, O. cujumary, and O. caniculata were subjected to comparison with data from O. floribunda, O. veraguensis, and O. whitei, previously reported. The multivariate analysis of chemical composition classified the EOs into two main clusters. Group I was characterized by the presence of α-pinene (9.8-22.5%) and ß-pinene (9.7-21.3%) and it includes O. caudata, O. whitei, and O. floribunda. In group II, the oils of O. cujumary and O. caniculata showed high similarity due amounts of ß-caryophyllene (22.2% and 18.9%, respectively). The EO of O. veraguensis, rich in p-cymene (19.8%), showed minor similarity among all samples. The oils displayed promising antimicrobial and cytotoxic activities against Escherichia coli (minimum inhibitory concentration (MIC) < 19.5 µg·mL-1) and MCF-7 cells (median inhibitory concentration (IC50) ≅ 65.0 µg·mL-1), respectively. The analysis of matK gene displayed a good correlation with the main class of chemical compounds present in the EOs. However, the matK gene data did not show correlation with specific compounds.


Subject(s)
Ocotea/chemistry , Ocotea/genetics , Terpenes/chemistry , Volatile Organic Compounds/chemistry , Bicyclic Monoterpenes , Cymenes , Escherichia coli/drug effects , Humans , Lauraceae/chemistry , Lauraceae/classification , Lauraceae/genetics , MCF-7 Cells , Monoterpenes/chemistry , Ocotea/classification , Phylogeny , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...