Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 979735, 2022.
Article in English | MEDLINE | ID: mdl-36212152

ABSTRACT

Melanoma is one of the most aggressive tumors, and its lethality is associated with the ability of malignant cells to migrate and invade surrounding tissues to colonize distant organs and to generate widespread metastasis. The serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2) are classically related to the control of pre-mRNA splicing through SR protein phosphorylation and have been found overexpressed in many types of cancer, including melanoma. Previously, we have demonstrated that the pharmacological inhibition of SRPKs impairs pulmonary colonization of metastatic melanoma in mice. As the used compounds could target at least both SRPK1 and SRPK2, here we sought to obtain additional clues regarding the involvement of these paralogs in melanoma progression. We analyzed single-cell RNA sequencing data of melanoma patient cohorts and found that SRPK2 expression in melanoma cells is associated with poor prognosis. Consistently, CRISPR-Cas9 genome targeting of SRPK2, but not SRPK1, impaired actin polymerization dynamics as well as the proliferative and invasive capacity of B16F10 cells in vitro. In further in vivo experiments, genetic targeting of SRPK2, but not SRPK1, reduced tumor progression in both subcutaneous and caudal vein melanoma induction models. Taken together, these findings suggest different functional roles for SRPK1/2 in metastatic melanoma and highlight the relevance of pursuing selective pharmacological inhibitors of SRPK2.

2.
Life Sci ; 307: 120849, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35926588

ABSTRACT

The serine/arginine-rich protein kinases (SRPK) specifically phosphorylate their substrates at RS-rich dipeptides, which are abundantly found in SR splicing factors. SRPK are classically known for their ability to affect the splicing and expression of gene isoforms commonly implicated in cancer and diseases associated with infectious processes. Non-splicing functions have also been attributed to SRPK, which highlight their functional plasticity and relevance as therapeutic targets for pharmacological intervention. In this sense, different SRPK inhibitors have been developed, such as the well-known SRPIN340 and its derivatives, with anticancer and antiviral activities. Here we evaluated the potential immunomodulatory activity of SRPIN340 and three trifluoromethyl arylamide derivatives. In in vitro analysis with RAW 264.7 macrophages and primary splenocytes, all the compounds modulated the expression of immune response mediators and antigen-presentation molecules related to a tendency for M2 macrophage polarization. Immunization experiments were carried out in mice to evaluate their potential as vaccine immunostimulants. When administrated alone, the compounds altered the expression of immune factors at the injection site and did not produce macroscopic or microscopic local reactions. In addition, when prepared as an adjuvant with inactivated EHV-1 antigens, all the compounds increased the anti-EHV-1 neutralizing antibody titers, a change that is consistent with an increased Th2 response. These findings demonstrate that SRPIN340 and its derivatives exhibit a noticeable capacity to modulate innate and adaptative immune cells, disclosing their potential to be used as vaccine adjuvants or in immunotherapies.


Subject(s)
Adjuvants, Vaccine , Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antiviral Agents , Arginine , Dipeptides , Immunity , Mice , Niacinamide/analogs & derivatives , Piperidines , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases , RNA Splicing Factors , Serine
3.
Biochem Pharmacol ; 203: 115161, 2022 09.
Article in English | MEDLINE | ID: mdl-35787994

ABSTRACT

Cancers have a strong relationship with immune cells in their microenvironment, which significantly influences tumor proliferation and progression. Thus, pharmacological strategies that stimulate the immune system to combat tumor cells are promising for better therapeutic efficacy. Deregulated expression of the splicing regulatory serine arginine protein kinases (mostly SRPK1 and SRPK2) has been found in different cancer types, leading to the expression of isoforms related to tumor growth and metastasis. The microenvironment of melanoma exhibits a strong presence of immune cells, which significantly influences tumor progression, and around 50% of cutaneous melanoma patients benefit from targeted immunotherapy. Here, we analyzed human malignant melanoma single-cell gene expression data and observed that SRPK1/2 overexpression correlates with immune system pathway alterations. In further analysis, we observed an increased presence of immune cells in biopsies from mice bearing metastatic melanoma treated with SRPIN340, a well-known SRPK1/2 pharmacological inhibitor. Local treatments increased the expression of proinflammatory cytokines at the tumor lesions and the activity of the spleen, accompanied by reduced pulmonary metastasis foci, edema formation, and alveolar congestion. In in vitro assays, SRPIN340 also potentiated immunological susceptibility, by increasing the expression of the antigen presenting MHCI and MHCII molecules and by increasing the ability of B16F10 cells to attract splenic cells in transwell assays. Taken together, these results reveal that the antimetastatic effect of SRPIN340 can also involve an increased immune response, which suggests additional functional clues for SRPKs in tumor biology.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Humans , Immunity , Melanoma/drug therapy , Mice , Niacinamide/analogs & derivatives , Piperidines , Protein Serine-Threonine Kinases , Skin Neoplasms/drug therapy , Tumor Microenvironment
4.
Anticancer Drugs ; 31(7): 718-727, 2020 08.
Article in English | MEDLINE | ID: mdl-32568827

ABSTRACT

Conventional treatments for metastatic melanomas are still ineffective and generate numerous side effects, justifying the search for new therapies. The antimetastatic effect of the named N-(2-(4-bromophenylamino)-5-(trifluoromethyl)phenyl)nicotinamide (SRVIC30) compound has been previously demonstrated in murine melanoma. Herein, we aimed to evaluate its effect when topically administrated in a murine subcutaneous melanoma model. For that, mice C57BL/6 were injected subcutaneously with 2 × 10 B16-F10 cells. Topical treatment began when tumors became visible on animal's back. Therefore, tumor volume was measured three times a week until it reaches 12 mm approximately. At this point, 40 mg oil-in-water cream (Lanette) without (control mice; n = 10) or with SRVIC30 compound (SRVIC30 group; n = 10 animals) were spread daily over the tumor external surface using a small brush for 14 days. The treatments increased the percentage of peroxidase antioxidant enzyme and dead cells via caspase-3 activation, with a consequent deposit of collagen fibers in the tumors. In addition, the skin of treated animals showed the presence of inflammatory infiltrate. Finally, SRVIC30 did not show signs of toxicity. Thus, we concluded that the topic administration of SRVIC30 was able to influence crucial anticancer processes such as tumor cells apoptosis and surrounding microenvironment.


Subject(s)
Melanoma, Experimental/drug therapy , Niacinamide/analogs & derivatives , Skin Neoplasms/drug therapy , Administration, Topical , Animals , Caspase 3/metabolism , Cell Death/drug effects , Male , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Niacinamide/adverse effects , Niacinamide/pharmacology , Skin Neoplasms/pathology
5.
Toxicol Appl Pharmacol ; 356: 214-223, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30138656

ABSTRACT

The Serine/arginine-rich protein kinases (SRPK) are involved in pre-mRNA splicing control through the phosphorylation of the SR protein family of splicing factors. Over the last years, several studies have shown the relevance of SRPK for human cancers and their potential as promising drug targets. In this context, we have previously selected three trifluoromethyl arylamides (named here as SRVIC24, SRVIC30 and SRVIC36) with improved in vitro antileukemia effect and ability of impairing the cellular activity of SRPK. Given the increasing amount of reports on the implication of these kinases in metastatic cancers, in this study, we have evaluated the antimetastatic effect of these compounds and the known SRPK inhibitor (SRPIN340) on a murine model of metastatic melanoma. The compounds were able to impact the melanoma cell metastatic behavior by decreasing migration, invasion, adhesion, and colony formation in in vitro assays. Also, they presented antimetastatic in vivo activity, without apparent signs of systemic toxicity after treatments, as revealed by the histology of organs and analysis of key serum biochemical markers. Moreover, the effect of the treatments on SRPK1 nuclear translocation and SR protein phosphorylation was observed. Finally, molecular docking studies were carried out to gain structural information on the SRPK-compound complexes. Together, these data suggest that SRPK pharmacological inhibition should be considered as an interesting therapeutic strategy against metastatic cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma, Experimental/drug therapy , Neoplasm Metastasis/prevention & control , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Drug Screening Assays, Antitumor , Female , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Neoplasm Invasiveness , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Niacinamide/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Tumor Stem Cell Assay
6.
Toxicol In Vitro ; 53: 1-9, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30048736

ABSTRACT

It is herein described the preparation and evaluation of antimetastatic activity of twenty-six cinnamic acid derivatives containing 1,2,3-triazolic portions. The compounds were prepared using as the key step the Copper(I)-catalyzed azide (A)-alkyne (A) cycloaddition (C) (CuAAC reaction), also known as click reaction, between alkynylated cinnamic acid derivatives and different benzyl azides. The reactions were carried in CH2Cl2/H2O (1:1 v/v) at room temperature, and the triazole derivatives were obtained in yields ranging from 73%99%. Reaction times varied from 5 to 40 min. The identity of the synthesized compounds was confirmed by IR and NMR (1H and 13C) spectroscopic techniques. They were then submitted to in vitro bioassays to investigate how they act over metastatic behavior of murine melanoma. The most potent compound, namely 3-(1-benzyl-1H-1,2,3-triazol-4-yl)propyl cinnamate (9a), showed significant antimetastatic and antiproliferative activities against B16-F10 cells. In addition, gelatin zymography and molecular docking analyses pointed to the fact that this compound has potential to interact with matrix metalloproteinase 9 (MMP-9) and MMP-2, which are directly involved in melanoma progression. Therefore, these findings suggest that cinnamic acid derivatives containing 1,2,3-triazolic portions may have potential for development of novel candidates for controlling malignant metastatic melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Cinnamates/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cinnamates/chemistry , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Molecular Docking Simulation , Triazoles/chemistry
7.
Biomed Res Int ; 2015: 150514, 2015.
Article in English | MEDLINE | ID: mdl-26273588

ABSTRACT

Alternative splicing allows cells to expand the encoding potential of their genomes. In this elegant mechanism, a single gene can yield protein isoforms with even antagonistic functions depending on the cellular physiological context. Alterations in splicing regulatory factors activity in cancer cells, however, can generate an abnormal protein expression pattern that promotes growth, survival, and other processes, which are relevant to tumor biology. In this review, we discuss dysregulated alternative splicing events and regulatory factors that impact pathways related to cancer. The SR proteins and their regulatory kinases SRPKs and CLKs have been frequently found altered in tumors and are examined in more detail. Finally, perspectives that support splicing machinery as target for the development of novel anticancer therapies are discussed.


Subject(s)
Alternative Splicing/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplasm Proteins/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Animals , Genetic Markers/genetics , Genetic Therapy/methods , Humans , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...