Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 150: 106335, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150817

ABSTRACT

This study aimed to identify the potential use of the ceramic composite ZrO2(CeO2)-Al2O3 as a dental implant due to its intrinsic geometry and different masticatory loads based on finite element simulations. Ceramic samples were sintered at 1500 °C-2h, and characterized: The mechanical properties of the ceramic composite (hardness, fracture toughness, flexural strength, Young's Modulus, and Poisson ratio) were determined, in addition to the relative density and its structural characteristics. Commercial dental implant designs (incisal and third-molar) on CAD models were used in this study as an initial implant geometry applied in a typical simulated mandible anatomy. Finite element models were generated for implant geometries using CAD and CAE techniques. Loading cases were considered based on different intensities (100-500 N) and orientation angles to the implant axis (0° and 45°) to reproduce human masticatory conditions. For comparison purposes, the numerical predictions were compared with finite element simulations of gold-standard titanium implants. Ce-TZP/Al2O3 sintered ceramics showed flexural strength of 952.6 ± 88 MPa, hardness and fracture toughness of 1427 ± 46 HV and 11.3 ± 0.4 MPa m1/2, respectively, beside Young's modulus of 228.3 ± 65 GPa and Poisson ratio of 0.28. For both Ce-TZP/Al2O3 dental implant geometries, the implant prototypes showed adequate mechanical behavior regardless of the masticatory load value or the orientation angle applied in the simulations: All finite element predictions are lower than the values established by Mohr Coulomb's failure criterion, allowing the feasibility, preliminarily, of the proposed ceramics for dental implant applications without fracture risk.


Subject(s)
Dental Implants , Humans , Materials Testing , Zirconium/chemistry , Flexural Strength , Ceramics/chemistry , Stress, Mechanical , Dental Stress Analysis , Surface Properties
2.
J Mech Behav Biomed Mater ; 129: 105171, 2022 05.
Article in English | MEDLINE | ID: mdl-35276638

ABSTRACT

OBJECTIVES: This study investigates the simulation of the mechanical behavior of a bioceramic composite based on (Ce,Y)-TZP reinforced with equiaxed Al2O3 and platelet-shaped hexaaluminate (H6A) grains using Finit Element Method (FEM). METHODS: A commercial (Ce, Y)-TZP/Al2O3 ceramic powder was compacted into disc-shaped specimens that were sintered at 1500 °C for 2 h. The sintered samples were further subjected to hydrothermal degradation in an autoclave at 134 °C, 0.2 MPa, for 10 h and characterized according to their phase composition, microstructure, and relative density. Their flexural strength values were determined by the piston-on-three-ball test, and Weibull statistics was used to evaluate the results. Their hardness, fracture toughness and elastic parameters were also measured. Numerical simulations of the biaxial strength test were performed using the ABAQUS finite element code. RESULTS: The sintered ceramic composite material presented relative density >99%, high resistance to hydrothermal degradation, average hardness of 1435 ± 35 HV, fracture toughness KIC of 9.7 ± 0.5 MPa m1/2, and average biaxial flexural strength of 952.6 ± 88 MPa. The numerical predictions of the biaxial flexural strength showed a consistently lower average biaxial flexural strength value of 880.9 MPa, ∼10% lower than the average experimental results. CONCLUSIONS: The differences observed are attributed to the complex coupled toughness mechanisms of this material, not included in the finite element simulations.


Subject(s)
Ceramics , Zirconium , Dental Materials , Flexural Strength , Materials Testing , Surface Properties , Yttrium/chemistry , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...