Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 122: 653-660, 2019 08.
Article in English | MEDLINE | ID: mdl-31229124

ABSTRACT

Minimally processed fruits are an alternative to dairy products to deliver probiotics. Bio-protection against several factors that affect their viability has been proposed in the food industry. In this study, probiotic Lactobacillus rhamnosus CECT 8361 was added to alginate-based coatings enriched with inulin and oligofructose and applied on fresh-blueberries. Probiotic viability, microbiological, physicochemical and sensory quality parameters of blueberries were monitored during 21 days of refrigerated storage. Also, L. rhamnosus CECT 8361 was tested for its antagonistic effect against inoculated Listeria innocua and E. coli O157:H7. Advantageously, prebiotic compounds allowed improving probiotic viability with counts above 6.2 log CFU/g for the entire period. Native microbiota counts remained under safe levels. Overall visual quality, odor and flavor were acceptable up to day 14 of storage. Regarding antimicrobial activity, L. rhamnosus CECT 8361 was able to reduce L. innocua counts by 1.7 log in inoculated blueberries. These results encourage further implementation of new fruit-based foods with multifunctional properties.


Subject(s)
Alginates/chemistry , Blueberry Plants , Edible Films , Fruit/microbiology , Functional Food , Lactobacillus/growth & development , Oligosaccharides/pharmacology , Probiotics , Food Handling , Food Microbiology , Inulin , Lactobacillus/drug effects , Lacticaseibacillus rhamnosus/physiology , Prebiotics , Taste
2.
J Food Sci Technol ; 54(3): 620-626, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28298675

ABSTRACT

Chitosan must be dissolved in acid solution to activate its antimicrobial properties. The objectives of present study were to determine whether acetic and lactic acids used to dissolve chitosan would influence its effectiveness to control the native microflora of Butterhead lettuce at harvest and during postharvest storage (7-8 °C, 5 days). Chitosan was applied as a SINGLE DOSE (14, 10, 7, 3 or 0 days previous to harvest) or in SUCCESSIVE DOSES (at 14 + 10 + 7+3 + 0 days prior to harvest). Although chitosan in acetic acid showed antimicrobial activity, treated plants showed dried brown stains which significantly reduced sensorial quality. Chitosan in lactic acid applied in a SINGLE DOSE at harvest or in SUCCESSIVE DOSES reduced microbial counts of all populations at harvest without affecting sensorial quality. After postharvest storage, lettuce treated with SUCCESSIVE APPLICATIONS of chitosan in lactic acid presented significant reductions in the microbial populations compared with untreated sample (-2.02 log in yeast and molds, -1.83 log in total coliforms, -1.4 log CFU g-1 in mesophilic bacteria and -1.1 log in psychrophilic bacteria). In conclusion, replacement of acetic by lactic acid did not affect the antimicrobial activity of chitosan, reducing microbial counts at harvest and after postharvest storage without affecting sensorial quality.

3.
Can J Microbiol ; 62(1): 24-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529589

ABSTRACT

Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation.


Subject(s)
Bacillus thuringiensis/growth & development , Esterases/biosynthesis , Bacillus thuringiensis/enzymology , Biotechnology , Culture Media , Glucose/pharmacology
4.
J Food Sci ; 76(1): M54-63, 2011.
Article in English | MEDLINE | ID: mdl-21535694

ABSTRACT

Antimicrobial packaging is one of the most promising active packaging systems for controlling spoilage and pathogenic microorganisms. In this work, the intrinsic antimicrobial properties of chitosan (CH) were combined with the excellent thermoplastic and film-forming properties of sodium caseinate (SC) to prepare SC/CH film-forming solutions and films. The antimicrobial effectiveness of SC, CH, and SC/CH coatings on the native microfloras of cheese, salami, and carrots was evaluated. In vitro assays through the test tube assay indicated that the most significant antimicrobial effect was achieved by CH and SC/CH solutions on carrot and cheese native microfloras. SC film-forming solutions did not exert antimicrobial activity on any of the native microflora studied. SC, CH, and SC/CH films stored in controlled environments showed that the retention of the antimicrobial action was observed until 5-d storage, at 65% relative humidity in both temperatures (10 °C and 20 °C). In vivo assays were also performed with SC, CH, and SC/CH applied as coatings or wrappers on the 3 food substrates. CH and SC/CH applied at both immersion and wrapper exerted a significant bactericidal action on mesophilic, psychrotrophic, and yeasts and molds counts, showing the 3 microbial populations analyzed a significant reduction (2.0 to 4.5 log CFU/g). An improvement of the bactericidal properties of the CH/SC blend respect to those of the neat CH film is reported. The ionic interaction between both macromolecules enhances its antimicrobial properties. Practical Application: The continuous consumer interest in high quality and food safety, combined with environmental concerns has stimulated the development and study of biodegradable coatings that avoid the use of synthetic materials. Among them, edible coatings, obtained from generally recognized as safe (GRAS) materials, have the potential to reduce weight loss, respiration rate, and improve food appearance and integrity. They can be used in combination with other food preservation techniques in order to extend the effectiveness of the food preservation chain. Moreover, antimicrobial films and coatings have innovated the concept of active packaging and have been developed to reduce, inhibit, or delay the growth of microorganisms on the surface of food in contact with the package. The use of antimicrobials packaging films to control the growth of microorganisms in food can have a significant impact on shelf-life extension and food safety. In addition, antimicrobial films can be prepared by the combination of inherent antimicrobial materials (that is, CH), with good film-forming protein-based ones (that is, SC). Therefore, the objective of this work is to study the performance of 2 biodegradable and edible biopolymers and their combination as natural packages for selected food products.


Subject(s)
Caseins/chemistry , Cheese/microbiology , Chitosan/chemistry , Daucus carota/microbiology , Food Packaging , Food Preservation/methods , Meat Products/microbiology , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Caseins/pharmacology , Chitosan/metabolism , Chitosan/pharmacology , Cold Temperature , Colony Count, Microbial , Fungi/drug effects , Fungi/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Immersion , Microbial Sensitivity Tests , Microbial Viability , Plant Roots/microbiology , Polymers/chemistry , Steam , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...