Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Nucl Cardiol ; 30(6): 2702-2711, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605061

ABSTRACT

BACKGROUND: Chagas heart disease (CHD) is characterized by progressive myocardial inflammation associated with myocardial fibrosis and segmental abnormalities that may lead to malignant ventricular arrhythmia and sudden cardiac death. This arrhythmia might be related to the persistence of parasitemia or inflammation in the myocardium in late-stage CHD. Positron emission tomography/computed tomography (PET/CT) has been used to detect myocardial inflammation in non-ischemic cardiomyopathies, such as sarcoidosis, and might be useful for risk prediction in patients with CHD. METHODS AND RESULTS: Twenty-four outpatients with chronic CHD were enrolled in this prospective cross-sectional study between May 2019 and March 2022. The patients were divided into two groups: those with sustained ventricular tachycardia and/or aborted sudden cardiac death who required implantable cardioverter-defibrillators, and those with the same stages of CHD and no complex ventricular arrhythmia. Patients underwent 18F-fluorodeoxyglucose (18F-FDG) and 68Ga-DOTATOC PET/CT, and blood samples were collected for qualitative parasite assessment by polymerase chain reaction. Although similar proportions of patients with and without complex ventricular arrhythmia showed 18F-FDG and 68Ga-DOTATOC uptake, 68Ga-DOTATOC corrected SUVmax was higher in patients with complex arrhythmia (3.4 vs 1.7; P = .046), suggesting that inflammation could be associated with the presence of malignant arrhythmia in the late stages of CHD. We also detected Trypanosoma cruzi in both groups, with a nonsignificant trend of increased parasitemia in the group with malignant arrhythmia (66.7% vs 33.3%). CONCLUSION: 18F-FDG and 68Ga-DOTATOC uptake on PET/CT may be useful for the detection of myocardial inflammation in patients with Chagas cardiomyopathy, and 68Ga-DOTATOC uptake may be associated with the presence of malignant arrhythmia, with potential therapeutic implications.


Subject(s)
Chagas Disease , Heart Diseases , Myocarditis , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Gallium Radioisotopes , Cross-Sectional Studies , Parasitemia , Prospective Studies , Myocarditis/diagnostic imaging , Arrhythmias, Cardiac/diagnostic imaging , Inflammation/diagnostic imaging , Death, Sudden, Cardiac , Chagas Disease/complications , Chagas Disease/diagnostic imaging
2.
PLoS Negl Trop Dis ; 17(3): e0011223, 2023 03.
Article in English | MEDLINE | ID: mdl-36972298

ABSTRACT

Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mortality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized by parasite persistence and inflammatory response in the heart tissue, which occur parallel to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX treatment regimens improved electrocardiographic alterations, reducing the percentage of mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed considerable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment groups compared with the control (infected, vehicle-treated) group. The latter showed pathways related to organismal abnormalities, cellular development, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle, cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz+PTX-treated group revealed 58 differentially expressed miRNAs associated with key signaling pathways related to cellular growth and proliferation, tissue development, cardiac fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes, was reversed upon Bz and Bz+PTX treatment regimens when further experimentally validated. Our results further our understanding of molecular pathways related to CCC progression and evaluation of treatment response. Moreover, the differentially expressed miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treatment outcomes.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , MicroRNAs , Nitroimidazoles , Pentoxifylline , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Chagas Cardiomyopathy/drug therapy , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Transcriptome , Disease Models, Animal , Trypanosoma cruzi/genetics , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , MicroRNAs/genetics , Fibrosis , Gene Expression Profiling , Trypanocidal Agents/pharmacology
3.
Pathogens ; 11(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36558833

ABSTRACT

Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.

4.
PLoS Negl Trop Dis ; 16(7): e0010535, 2022 07.
Article in English | MEDLINE | ID: mdl-35797352

ABSTRACT

A recurring question concerning Trypanosoma cruzi DNA detection/quantification is related to the fact that DNA amplification, by itself, does not differentiate between viable or dead parasites. On the other hand, RNA can be considered a potential molecular marker of pathogens viability. Herein, we developed a quantitative real-time PCR with reverse Transcription (RT-qPCR) to quantify viable T. cruzi in artificially infected Rhodnius prolixus whilst evaluating differences between DNA and mRNA quantification along the insect midgut during 5, 9, 15 and 29 days after feeding. The RT-qPCR presented an improved performance with linearities ranging from 107 to 102 parasites equivalents and 3 to 0.0032 intestine unit equivalents, and efficiencies of 100.3% and 102.8% for both T. cruzi and triatomine targets, respectively. Comparing both RT-qPCR and qPCR, we confirmed that RNA is faster degraded, no longer being detected at day 1 after parasite lysis, while DNA detection was stable, with no decrease in parasite load over the days, even after parasite lysis. We also observed statistical differences between the quantification of the parasite load by DNA and by RNA on day 15 after feeding of experimentally infected R. prolixus. When assessing different portions of the digestive tract, by RT-qPCR, we could detect a statistically significant reduction in the parasite amount in the anterior midgut. Oppositely, there was a statistically significant increase of the parasite load in the hindgut. In conclusion, for this study parasite's viability in R. prolixus digestive tract were assessed targeting T. cruzi mRNA. In addition, differences between DNA and RNA detection observed herein, raise the possibility that RNA is a potential molecular viability marker, which could contribute to understanding the dynamics of the parasite infection in invertebrate hosts.


Subject(s)
Chagas Disease , Parasites , Rhodnius , Triatominae , Trypanosoma cruzi , Animals , Chagas Disease/parasitology , Insect Vectors/parasitology , Parasites/genetics , RNA , RNA, Messenger , Rhodnius/genetics , Rhodnius/parasitology , Trypanosoma cruzi/genetics
5.
Sci Rep ; 12(1): 1436, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082354

ABSTRACT

In the heart tissue of acutely Trypanosoma cruzi-infected mice miR-145-5p and miR-146b-5p are, respectively, downregulated and upregulated. Here, we used the H9C2 rat cardiomyoblast cell line infected with the Colombian T. cruzi strain to investigate the parasite-host cell interplay, focusing on the regulation of miR-145-5p and miR-146b-5p expression. Next, we explored the effects of interventions with the trypanosomicidal drug Benznidazole (Bz) alone or combined with Pentoxifylline (PTX), a methylxanthine derivative shown to modulate immunological and cardiac abnormalities in a model of chronic chagasic cardiomyopathy, on parasite load and expression of miR-145-5p and miR-146b-5p. The infection of H9C2 cells with trypomastigote forms allowed parasite cycle with intracellular forms multiplication and trypomastigote release. After 48 and 144 h of infection, upregulation of miR-145-5p (24 h: 2.38 ± 0.26; 48 h: 3.15 ± 0.9-fold change) and miR-146b-5b (24 h: 2.60 ± 0.46; 48 h: 2.97 ± 0.23-fold change) was detected. The peak of both miRNA levels paralleled with release of trypomastigote forms. Addition of 3 µM and 10 µM of Bz 48 h after infection reduced parasite load but did not interfere with miR-145-5p and miR-146b-5p levels. Addition of PTX did not interfere with Bz-induced parasite control efficacy. Conversely, combined Bz + PTX treatment decreased the levels of both microRNAs, resembling the expression levels detected in non-infected H9C2 cells. Moreover, the use of miR-145-5p and miR-146b-5p mimic/inhibitor systems before infection of H9C2 cells decreased parasite load, 72 h postinfection. When H9C2 cells were treated with miR-145-5p and miR-146b-5p mimic/inhibitor 48 h after infection, all the used systems, except the miR-146b-5p inhibitor, reduced parasite load. Altogether, our data indicate that these microRNAs putatively control signaling pathways crucial for parasite-host cell interaction. Thus, miR-145-5p and miR-146b-5p deserve to be further investigated as biomarkers of parasite control and tools to identify therapeutic adjuvants to etiological treatment in Chagas disease.


Subject(s)
Host-Parasite Interactions/drug effects , MicroRNAs/genetics , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Drug Combinations , Gene Expression Regulation , Host-Parasite Interactions/genetics , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Nitroimidazoles/pharmacology , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , Pentoxifylline/pharmacology , Rats , Signal Transduction , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
6.
PLoS One ; 16(11): e0260087, 2021.
Article in English | MEDLINE | ID: mdl-34807915

ABSTRACT

The emergence of the COVID-19 pandemic resulted in an unprecedented need for RT-qPCR-based molecular diagnostic testing, placing a strain on the supply chain and the availability of commercially available PCR testing kits and reagents. The effect of limited molecular diagnostics-related supplies has been felt across the globe, disproportionally impacting molecular diagnostic testing in developing countries where acquisition of supplies is limited due to availability. The increasing global demand for commercial molecular diagnostic testing kits and reagents has made standard PCR assays cost prohibitive, resulting in the development of alternative approaches to detect SARS-CoV-2 in clinical specimens, circumventing the need for commercial diagnostic testing kits while mitigating the high-demand for molecular diagnostics testing. The timely availability of the complete SARS-CoV-2 genome in the beginning of the COVID-19 pandemic facilitated the rapid development and deployment of specific primers and standardized laboratory protocols for the molecular diagnosis of COVID-19. An alternative method offering a highly specific manner of detecting and genotyping pathogens within clinical specimens is based on the melting temperature differences of PCR products. This method is based on the melting temperature differences between purine and pyrimidine bases. Here, RT-qPCR assays coupled with a High Resolution Melting analysis (HRM-RTqPCR) were developed to target different regions of the SARS-CoV-2 genome (RdRp, E and N) and an internal control (human RNAse P gene). The assays were validated using synthetic sequences from the viral genome and clinical specimens (nasopharyngeal swabs, serum and saliva) of sixty-five patients with severe or moderate COVID-19 from different states within Brazil; a larger validation group than that used in the development to the commercially available TaqMan RT-qPCR assay which is considered the gold standard for COVID-19 testing. The sensitivity of the HRM-RTqPCR assays targeting the viral N, RdRp and E genes were 94.12, 98.04 and 92.16%, with 100% specificity to the 3 SARS-CoV-2 genome targets, and a diagnostic accuracy of 95.38, 98.46 and 93.85%, respectively. Thus, HRM-RTqPCR emerges as an attractive alternative and low-cost methodology for the molecular diagnosis of COVID-19 in restricted-budget laboratories.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Real-Time Polymerase Chain Reaction/methods , Adult , COVID-19 Nucleic Acid Testing/standards , Female , Humans , Male , Nucleic Acid Denaturation , Oligonucleotides/chemistry , Real-Time Polymerase Chain Reaction/standards , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Saliva/virology , Sensitivity and Specificity
7.
Front Cell Infect Microbiol ; 11: 692655, 2021.
Article in English | MEDLINE | ID: mdl-34381739

ABSTRACT

Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe form of Chagas disease, a neglected tropical illness caused by the protozoan Trypanosoma cruzi, and the main cause of morbimortality from cardiovascular problems in endemic areas. Although efforts have been made to understand the signaling pathways and molecular mechanisms underlying CCC, the immunological signaling pathways regulated by the etiological treatment with benznidazole (Bz) has not been reported. In experimental CCC, Bz combined with the hemorheological and immunoregulatory agent pentoxifylline (PTX) has beneficial effects on CCC. To explore the molecular mechanisms of Bz or Bz+PTX therapeutic strategies, C57BL/6 mice chronically infected with the T. cruzi Colombian strain (discrete typing unit TcI) and showing electrocardiographic abnormalities were submitted to suboptimal dose of Bz or Bz+PTX from 120 to 150 days postinfection. Electrocardiographic alterations, such as prolonged corrected QT interval and heart parasite load, were beneficially impacted by Bz and Bz+PTX. RT-qPCR TaqMan array was used to evaluate the expression of 92 genes related to the immune response in RNA extracted from heart tissues. In comparison with non-infected mice, 30 genes were upregulated, and 31 were downregulated in infected mice. Particularly, infection upregulated the cytokines IFN-γ, IL-12b, and IL-2 (126-, 44-, and 18-fold change, respectively) and the T-cell chemoattractants CCL3 and CCL5 (23- and 16-fold change, respectively). Bz therapy restored the expression of genes related to inflammatory response, cellular development, growth, and proliferation, and tissue development pathways, most probably linked to the cardiac remodeling processes inherent to CCC, thus mitigating the Th1-driven response found in vehicle-treated infected mice. The combined Bz+PTX therapy revealed pathways related to the modulation of cell death and survival, and organismal survival, supporting that this strategy may mitigate the progression of CCC. Altogether, our results contribute to the better understanding of the molecular mechanisms of the immune response in the heart tissue in chronic Chagas disease and reinforce that parasite persistence and dysregulated immune response underpin CCC severity. Therefore, Bz and Bz+PTX chemotherapies emerge as tools to interfere in these pathways aiming to improve CCC prognosis.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Animals , Chagas Cardiomyopathy/drug therapy , Immunity , Mice , Mice, Inbred C57BL , Nitroimidazoles
8.
PLoS One ; 16(2): e0246435, 2021.
Article in English | MEDLINE | ID: mdl-33529258

ABSTRACT

In Brazil, orally acquired T. cruzi infection has become the most relevant transmission mechanisms from public health perspective. Around 70% of new Chagas disease cases have been associated with consumption of contaminated food or beverages. Açai (Euterpe oleracea and Euterpe precatoria) is currently one of the most commercialized Amazonian fruits in the Brazilian and international markets. Therefore, it has become important to incorporate in the production process some procedures to measure out effective hygiene and product quality control required by global market. Molecular methods have been developed for rapid detection and quantification of T. cruzi DNA in several biological samples, including food matrices, for epidemiological investigation of Chagas disease and food quality control. However, a high-performance molecular methodology since DNA extraction until detection and quantification of T. cruzi DNA in açai berry pulp is still needed. Herein, a simple DNA extraction methodology was standardized from the supernatant of açai berry pulp stabilized in a 6M Guanidine-HCl/0.2M EDTA buffer. In addition, a multiplex real time qPCR assay, targeting T. cruzi DNA and an Exogenous Internal Positive Control was developed and validated, using reference from all T. cruzi DTUs and commercial samples of açai pulp, from an endemic municipality with previous history of oral Chagas disease outbreak. Thus, a high-sensitivity qPCR assay, that could detect up to 0.01 parasite equivalents/mL in açai, was reached. As of the 45 commercial samples analyzed, 9 (20%) were positive for T. cruzi. This high-sensitive, fast, and easy-to-use molecular assay is compatible with most of the laboratories involved in the investigations of oral Chagas disease outbreaks, representing an important tool to the epidemiology, control, and surveillance of Chagas disease.


Subject(s)
Chagas Disease/parasitology , Euterpe/parasitology , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Trypanosoma cruzi/genetics , Brazil/epidemiology , Chagas Disease/epidemiology , DNA/analysis , DNA/genetics , Humans , Limit of Detection , Trypanosoma cruzi/isolation & purification
9.
J Mol Diagn ; 23(5): 521-531, 2021 05.
Article in English | MEDLINE | ID: mdl-33549859

ABSTRACT

Accurate diagnostic tools and surrogate markers of parasitologic response to treatment are needed for managing Chagas disease. Quantitative real-time PCR (qPCR) is used for treatment monitoring, but variability in copy dosage and sequences of molecular target genes among different Trypanosoma cruzi strains limit the precision of quantitative measures. To improve qPCR quantification accuracy, we designed and evaluated a synthetic DNA molecule containing a satellite DNA (satDNA) repeat unit as standard for quantification of T. cruzi loads in clinical samples, independently of the parasite strain. Probit regression analysis established for Dm28c (TcI) and CL-Brener (TcVI) stocks similar 95% limit of detection values [0.903 (0.745 to 1.497) and 0.667 (CI, 0.113 to 3.927) copy numbers/µL, respectively] when synthetic DNA was the standard for quantification, allowing direct comparison of loads in samples infected with different discrete typing units. This standard curve was evaluated in 205 samples (38 acute oral and 19 chronic Chagas disease patients) from different geographical areas infected with various genotypes, including samples obtained during treatment follow-up; high agreement with parasitic load trends using standard curves based on DNA extracted from spiked blood with counted parasites was obtained. This qPCR-based quantification strategy will be a valuable tool in phase 3 clinical trials, to follow up patients under treatment or at risk of reactivation, and in experimental models using different parasite strains.


Subject(s)
Chagas Disease/diagnosis , DNA, Protozoan/genetics , DNA, Satellite/genetics , Genetic Variation , Molecular Typing/methods , Trypanosoma cruzi/genetics , Base Sequence , Chagas Disease/genetics , Chagas Disease/parasitology , DNA, Protozoan/analysis , DNA, Satellite/analysis , Genotype , Humans , Real-Time Polymerase Chain Reaction
10.
Exp Parasitol ; 221: 108061, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383023

ABSTRACT

Chagas disease (CD) caused by Trypanosoma cruzi remains a serious public health problem in Latin America. The available treatment is limited to two old drugs, benznidazole (Bz) and nifurtimox, which exhibit limited efficacy and trigger side effects, justifying the search for new therapies. Also, more accurate and sensitive experimental protocols for drug discovery programs are necessary to shrink the translational gaps found among pre-clinical and clinical trials. Presently, cardiac spheroids were used to evaluate host cell cytotoxicity and anti-T.cruzi activity of benznidazole, exploring its effect on the release of inflammatory mediators. Bz presented low toxic profile on 3D matrices (LC50 > 200 µM) and high potency in vitro (EC50 = 0.99 µM) evidenced by qPCR analysis of T.cruzi-infected cardiac spheroids. Flow cytometry appraisal of inflammatory mediators released at the cellular supernatant showed increases in IL - 6 and TNF contents (≈190 and ≈ 25-fold) in parasitized spheroids as compared to uninfected cultures. Bz at 10 µM suppressed parasite load (92%) concomitantly decreasing in IL-6 (36%) and TNF (68%). Our findings corroborate the successful use of 3D cardiac matrices for in vitro identification of novel anti-parasitic agents and potential impact in host cell physiology.


Subject(s)
Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Imaging, Three-Dimensional , Mice , Microscopy, Fluorescence , Molecular Conformation , Spheroids, Cellular , Trypanosoma cruzi/growth & development
11.
PLoS Negl Trop Dis ; 14(10): e0008750, 2020 10.
Article in English | MEDLINE | ID: mdl-33044986

ABSTRACT

Leishmaniasis is a worldwide neglected disease, encompassing asymptomatic infections and different clinical forms, such as American Tegumentary Leishmaniasis (ATL) which is part of the complex of diseases caused by protozoan parasites from Leishmania genus, transmitted by sand fly vectors. As a neglected disease, much effort is still needed in treatment and diagnosis. Currently, ATL diagnosis is mainly made by parasite detection by microscopy. The sensitivity of the method varies, and factors such as collection procedures interfere. Molecular approaches, specially based on Real Time PCR (qPCR) technique, has been widely used to detect Leishmania infection and to quantify parasite load, once it is a simple, rapid and sensitive methodology, capable to detect low parasite concentrations and less prone to variability. Although many studies have been already published addressing the use of this technique, an improvement on these methodologies, including an analytical validation, standardization and data association is demanded. Moreover, a proper validation by the assay by the use of clinical samples is still required. In this sense, the purpose of the present work is to compare the performance of qPCR using two commonly used targets (18S rDNA and HSP70) with an internal control (RNAse P) in multiplex reactions. Additionally, we validated reactions by assaying 88 samples from patients presenting different clinical forms of leishmaniasis (cutaneous, mucosal, recent and old lesions), representing the diversity found in Brazil's Amazon Region. Following the methodology proposed herein, the results indicate the use of both qPCR assays, 18S rDNA and HSP70, to achieve a very good net sensitivity (98.5%) and specificity (100%), performing simultaneous or sequential testing, respectively. With this approach, our main goal is to conclude the first step of a further multicenter study to propose the standardization of detection and quantification of Leishmania.


Subject(s)
DNA, Ribosomal/genetics , HSP70 Heat-Shock Proteins/genetics , Leishmania/isolation & purification , Leishmaniasis, Cutaneous/parasitology , Parasite Load/methods , Real-Time Polymerase Chain Reaction/methods , DNA, Protozoan/analysis , DNA, Protozoan/genetics , DNA, Ribosomal/analysis , HSP70 Heat-Shock Proteins/analysis , Humans , Leishmaniasis, Cutaneous/pathology , Sensitivity and Specificity , Skin/parasitology
12.
Mem Inst Oswaldo Cruz ; 115: e190364, 2020.
Article in English | MEDLINE | ID: mdl-32130371

ABSTRACT

Oral transmission of Chagas disease has been increasing in Latin American countries. The present study aimed to investigate changes in hepatic function, coagulation factor levels and parasite load in human acute Chagas disease (ACD) secondary to oral Trypanosoma cruzi transmission. Clinical and epidemiological findings of 102 infected individuals attended in the State of Pará from October 2013 to February 2016 were included. The most common symptoms were fever (98%), asthenia (83.3%), face and limb edema (80.4%), headache (74.5%) and myalgia (72.5%). The hepatic enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) of 30 ACD patients were higher compared with controls, and this increase was independent of the treatment with benznidazole. Moreover, ACD individuals had higher plasma levels of activated protein C and lower levels of factor VII of the coagulation cascade. Patients with the highest parasite load had also the most increased transaminase levels. Also, ALT and AST were associated moderately (r = 0.429) and strongly (r = 0.595) with parasite load respectively. In conclusion, the present study raises the possibility that a disturbance in coagulation and hepatic function may be linked to human ACD.


Subject(s)
Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Chagas Disease/physiopathology , Factor VIIa/analysis , Liver/physiopathology , Protein C/analysis , Acute Disease , Adult , Biomarkers/blood , Brazil/epidemiology , Case-Control Studies , Chagas Disease/blood , Chagas Disease/enzymology , Chagas Disease/transmission , Female , Humans , Liver/enzymology , Male , Middle Aged , Parasite Load , Prospective Studies
13.
ACS Infect Dis ; 5(3): 365-371, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30625275

ABSTRACT

Up to now, no vaccines are available for Chagas disease, and the current therapy is largely unsatisfactory. Novel imidazole-based scaffolds of protozoan sterol 14α-demethylase (CYP51) inhibitors have demonstrated potent antiparasitic activity with no acute toxicity. Presently our aim was to investigate the effectiveness of the experimental 14α-demethylase inhibitor VFV in the mouse models of Trypanosoma cruzi infection using a naturally drug-resistant Colombiana strain, under monotherapy and in association with the reference drug, benznidazole (Bz). The treatment with VFV resulted in complete parasitemia suppression and 100% animal survival when administered orally (given in 10% DMSO plus 5% Arabic gum) at 25 mg/kg (bid) for 60 days. However, as parasite relapse was found using VFV alone under this treatment scheme, the coadministration of VFV with Bz was assayed giving simultaneously (for 60 days, bid) by oral route, under two different drug vehicles (10% DMSO plus 5% Gum Arabic with or without 3% Tween 80). All tested mice groups resulted in >99.9% of parasitemia decrease and 100% animal survival. qPCR analysis performed on cyclophosphamide immunosuppressed mice revealed that, although presenting lack of cure, VFV given as monotherapy was 14-fold more active than Bz, and the coadministration of Bz plus VFV (given simultaneously, using 10% DMSO plus 5% Gum Arabic as vehicle) resulted in 106-fold lower blood parasitism as compared to the monotherapy of Bz. Another interesting finding was the parasitological cure in 70% of the animals treated with Bz and VFV when the coadministration was given using the VFV suspension in 10% DMSO + Arabic gum + Tween 80 (a formulation that we have found to provide a better pharmacokinetics), even after immunosuppression using cyclophosphamide cycles, supporting the promising aspect of the drug coadministration in improving the efficacy of therapeutic arsenal against T. cruzi.


Subject(s)
14-alpha Demethylase Inhibitors/administration & dosage , Chagas Disease/drug therapy , Nitroimidazoles/administration & dosage , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents/administration & dosage , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , 14-alpha Demethylase Inhibitors/chemistry , Animals , Chagas Disease/parasitology , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Humans , Male , Mice , Nitroimidazoles/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Trypanocidal Agents/chemistry , Trypanosoma cruzi/chemistry
14.
J Neuroinflammation ; 14(1): 182, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28877735

ABSTRACT

BACKGROUND: In conditions of immunosuppression, the central nervous sty 5ystem (CNS) is the main target tissue for the reactivation of infection by Trypanosoma cruzi, the causative agent of Chagas disease. In experimental T. cruzi infection, interferon gamma (IFNγ)+ microglial cells surround astrocytes harboring amastigote parasites. In vitro, IFNγ fuels astrocyte infection by T. cruzi, and IFNγ-stimulated infected astrocytes are implicated as potential sources of tumor necrosis factor (TNF). Pro-inflammatory cytokines trigger behavioral alterations. In T. cruzi-infected mice, administration of anti-TNF antibody hampers depressive-like behavior. Herein, we investigated the effects of TNF on astrocyte susceptibility to T. cruzi infection and the regulation of cytokine production. METHODS: Primary astrocyte cultures of neonatal C57BL/6 and C3H/He mice and the human U-87 MG astrocyte lineage were infected with the Colombian T. cruzi strain. Cytokine production, particularly TNF, and TNF receptor 1 (TNFR1/p55) expression were analyzed. Recombinant cytokines (rIFNγ and rTNF), the anti-TNF antibody infliximab, and the TNFR1 modulator pentoxifylline were used to assess the in vitro effects of TNF on astrocyte susceptibility to T. cruzi infection. To investigate the role of TNF on CNS colonization by T. cruzi, infected mice were submitted to anti-TNF therapy. RESULTS: rTNF priming of mouse and human astrocytes enhanced parasite/astrocyte interaction (i.e., the percentage of astrocytes invaded by trypomastigote parasites and the number of intracellular parasite forms/astrocyte). Furthermore, T. cruzi infection drove astrocytes to a pro-inflammatory profile with TNF and interleukin-6 production, which was amplified by rTNF treatment. Adding rTNF prior to infection fueled parasite growth and trypomastigote egression, in parallel with increased TNFR1 expression. Importantly, pentoxifylline inhibited the TNF-induced increase in astrocyte susceptibility to T. cruzi invasion. In T. cruzi-infected mice, anti-TNF therapy reduced the number of amastigote nests in the brain. CONCLUSIONS: Our data implicate TNF as a promoter of T. cruzi invasion of mouse and human astrocytes. Moreover, the TNF-enriched inflammatory milieu and enhanced TNFR1 expression may favor TNF signaling, astrocyte colonization by T. cruzi and egression of trypomastigotes. Therefore, in T. cruzi infection, a self-sustaining TNF-induced inflammatory circuit may perpetuate the parasite cycle in the CNS and ultimately promote cytokine-driven behavioral alterations.


Subject(s)
Astrocytes/metabolism , Chagas Disease/metabolism , Inflammation Mediators/metabolism , Trypanosoma cruzi , Tumor Necrosis Factor-alpha/toxicity , Animals , Astrocytes/drug effects , Astrocytes/pathology , Cell Line, Tumor , Cells, Cultured , Chagas Disease/pathology , Cytokines/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Mice, Inbred C3H , Mice, Inbred C57BL
15.
PLoS Negl Trop Dis ; 9(3): e0003659, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25789471

ABSTRACT

BACKGROUND: Chronic chagasic cardiomyopathy (CCC), the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas' heart disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV) hypertrophy and restored the decreased LV ejection fraction. CONCLUSIONS/SIGNIFICANCE: PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/immunology , Pentoxifylline/pharmacology , Trypanosoma cruzi/immunology , Animals , Connexin 43 , Heart/drug effects , Heart/parasitology , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Pentoxifylline/therapeutic use , Trypanosoma cruzi/drug effects
16.
PLoS Negl Trop Dis ; 9(1): e3439, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569338

ABSTRACT

BACKGROUND: Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection. METHODOLOGY/PRINCIPAL FINDINGS: Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection. CONCLUSIONS/SIGNIFICANCE: These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection.


Subject(s)
Antigens, Protozoan/immunology , Leishmania braziliensis/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Cutaneous/prevention & control , Administration, Intranasal , Animals , Antibodies, Protozoan , Cricetinae , Immunoglobulin G/blood , Interferon-gamma/metabolism , Leishmaniasis Vaccines/administration & dosage , Parasite Load , Skin/metabolism , Skin/parasitology
17.
PLoS Pathog ; 11(1): e1004594, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25617628

ABSTRACT

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC) associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd) carrying sequences of amastigote surface protein-2 (rAdASP2) and trans-sialidase (rAdTS) T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax) using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi), when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFN)γ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi) and the boost (analysis at 180 and 230 dpi). Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28), CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO) levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells, preserved the number of IFNγ+ cells, increased the expression of IFNγ mRNA but reduced inducible NO synthase mRNA. Vaccine-based immunostimulation with rAd might offer a rational alternative for re-programming the immune response to preserve and, moreover, recover tissue injury in Chagas' heart disease.


Subject(s)
Chagas Cardiomyopathy/prevention & control , Chagas Disease/immunology , Chagas Disease/therapy , Protozoan Vaccines/therapeutic use , Trypanosoma cruzi/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Female , Immune System Phenomena , Mice , Mice, Inbred C57BL , Vaccination , Vaccines, DNA/genetics , Vaccines, DNA/immunology
18.
Parasit Vectors ; 7: 463, 2014 Oct 05.
Article in English | MEDLINE | ID: mdl-25287580

ABSTRACT

BACKGROUND: Ecto-Nucleoside Triphosphate Diphosphohydrolases (Ecto-NTPDases) are enzymes that hydrolyze tri- and/or di-phosphate nucleotides. Evidences point to their participation in Trypanosoma cruzi virulence and infectivity. In this work, we evaluate TcNTPDase-1 gene expression in comparison with ecto-NTPDase activity, in order to study the role of TcNTPDase-1 in parasite virulence, infectivity and adaptation to heat shock. FINDINGS: Comparison between distinct T. cruzi isolates (Y, 3663 and 4167 strains, and Dm28c, LL014 and CL-14 clones) showed that TcNTPDase-1 expression was 7.2 ± 1.5 times higher in the Dm28c than the CL-14 avirulent clone. A remarkable expression increase was also observed in the trypomastigote and amastigote forms (22.5 ± 5.6 and 16.3 ± 3.8 times higher than epimastigotes, respectively), indicating that TcNTPDase-1 is overexpressed in T. cruzi infective forms. Moreover, heat shock and long-term cultivation also induced a significant increment on TcNTPDase-1 expression. CONCLUSIONS: Our results suggest that TcNTPDase-1 plays an important role on T. cruzi infectivity and adaptation to stress conditions, such as long-term cultivation and heat shock.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Heat-Shock Response , Nucleoside-Triphosphatase/metabolism , Trypanosoma cruzi/enzymology , Base Sequence , DNA, Protozoan/genetics , Molecular Sequence Data , Nucleoside-Triphosphatase/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism
19.
Mediators Inflamm ; 2014: 475946, 2014.
Article in English | MEDLINE | ID: mdl-25221388

ABSTRACT

The aim of the present study was to assess the effects of an anticholinesterase agent, pyridostigmine bromide (Pyrido), on experimental chronic Chagas heart disease in mice. To this end, male C57BL/6J mice noninfected (control:Con) or chronically infected (5 months) with Trypanosoma cruzi (chagasic:Chg) were treated or not (NT) with Pyrido for one month. At the end of this period, electrocardiogram (ECG); cardiac autonomic function; heart histopathology; serum cytokines; and the presence of blood and tissue parasites by means of immunohistochemistry and PCR were assessed. In NT-Chg mice, significant changes in the electrocardiographic, autonomic, and cardiac histopathological profiles were observed confirming a chronic inflammatory response. Treatment with Pyrido in Chagasic mice caused a significant reduction of myocardial inflammatory infiltration, fibrosis, and hypertrophy, which was accompanied by a decrease in serum levels of IFNγ with no change in IL-10 levels, suggesting a shift of immune response toward an anti-inflammatory profile. Lower nondifferent numbers of parasite DNA copies were observed in both treated and nontreated chagasic mice. In conclusion, our findings confirm the marked neuroimmunomodulatory role played by the parasympathetic autonomic nervous system in the evolution of the inflammatory-immune response to T. cruzi during experimental chronic Chagas heart disease in mice.


Subject(s)
Cardiomyopathies/drug therapy , Chagas Disease/drug therapy , Chronic Disease/drug therapy , Pyridostigmine Bromide/therapeutic use , Animals , Cardiomyopathies/metabolism , Chagas Disease/metabolism , Cholinesterase Inhibitors/therapeutic use , Electrocardiography , Heart Rate/drug effects , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Trypanosoma cruzi/pathogenicity
20.
Mediators Inflamm ; 2014: 798078, 2014.
Article in English | MEDLINE | ID: mdl-25140115

ABSTRACT

BACKGROUND: Chagas disease (CD) is characterized by parasite persistence and immunological unbalance favoring systemic inflammatory profile. Chronic chagasic cardiomyopathy, the main manifestation of CD, occurs in a TNF-enriched milieu and frequently progresses to heart failure. AIM OF THE STUDY: To challenge the hypothesis that TNF plays a key role in Trypanosoma cruzi-induced immune deregulation and cardiac abnormalities, we tested the effect of the anti-TNF antibody Infliximab in chronically T. cruzi-infected C57BL/6 mice, a model with immunological, electrical, and histopathological abnormalities resembling Chagas' heart disease. RESULTS: Infliximab therapy did not reactivate parasite but reshaped the immune response as reduced TNF mRNA expression in the cardiac tissue and plasma TNF and IFNγ levels; diminished the frequency of IL-17A(+) but increased IL-10(+) CD4(+) T-cells; reduced TNF(+) but augmented IL-10(+) Ly6C(+) and F4/80(+) cells. Further, anti-TNF therapy decreased cytotoxic activity but preserved IFNγ-producing VNHRFTLV-specific CD8(+) T-cells in spleen and reduced the number of perforin(+) cells infiltrating the myocardium. Importantly, Infliximab reduced the frequency of mice afflicted by arrhythmias and second degree atrioventricular blocks and decreased fibronectin deposition in the cardiac tissue. CONCLUSIONS: Our data support that TNF is a crucial player in the pathogenesis of Chagas' heart disease fueling immunological unbalance which contributes to cardiac abnormalities.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/metabolism , Heart Diseases/drug therapy , Heart Diseases/metabolism , Trypanosoma cruzi/pathogenicity , Tumor Necrosis Factor-alpha/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Female , Flow Cytometry , Heart/drug effects , Heart/parasitology , Immunohistochemistry , Infliximab , Interleukin-10/metabolism , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...