Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Mem Inst Oswaldo Cruz ; 118: e230115, 2023.
Article in English | MEDLINE | ID: mdl-38126526

ABSTRACT

BACKGROUND: A positive Trypanosoma cruzi polymerase chain reaction (PCR) is associated with a worse prognosis in patients with chronic Chagas disease (CD). OBJECTIVES: To study the association of clinical, electrocardiographic, and echocardiographic characteristics and biomarker blood levels with positive T. cruzi PCR in chronic CD. METHODS: This is a single-centre observational cross-sectional study. Positive T. cruzi PCR association with clinical, electrocardiographic, and echocardiographic characteristics, and biomarker blood levels were studied by logistic regression analysis. p values < 0.05 were considered significant. FINDINGS: Among 333 patients with chronic CD (56.4% men; 62 ± 10 years), T. cruzi PCR was positive in 41.1%. Stepwise multivariate logistic regression showed an independent association between positive T. cruzi PCR and diabetes mellitus {odds ratio (OR) 0.53 [95% confidence interval (CI) 0.30-0.93]; p = 0.03}, right bundle branch block [OR 1.78 (95% CI 1.09-2.89); p = 0.02], and history of trypanocidal treatment [OR 0.13 (95% CI 0.04-0.38); p = 0.0002]. Among patients with a history of trypanocidal treatment (n = 39), only four (10%) patients had a positive T. cruzi PCR. MAIN CONCLUSIONS: Among several studied parameters, only diabetes mellitus, right bundle branch block, and history of trypanocidal treatment showed an independent association with positive T. cruzi PCR. History of trypanocidal treatment was a strong protective factor against a positive T. cruzi PCR.


Subject(s)
Chagas Disease , Diabetes Mellitus , Trypanocidal Agents , Trypanosoma cruzi , Female , Humans , Male , Biomarkers , Bundle-Branch Block/complications , Bundle-Branch Block/drug therapy , Chagas Disease/drug therapy , Chronic Disease , Cross-Sectional Studies , Diabetes Mellitus/drug therapy , Polymerase Chain Reaction , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/genetics , Middle Aged , Aged
3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446381

ABSTRACT

Human herpesviruses (HHVs) can establish latency and be reactivated, also are neurotropic viruses that can trigger neurological disorders. HHV-6 is a herpesvirus that is associated with neurological disorders. Studies have reported the detection of HHV-6 in patients with COVID-19 and neurological manifestations. However, specific diagnoses of the neurological disorders caused by these viruses tend to be invasive or difficult to interpret. This study aimed to establish a relationship between miRNA and neurological manifestations in patients co-infected with COVID-19 and HHV-6 and evaluate miRNAs as potential biomarkers. Serum samples from COVID-19 patients in the three cohorts were analyzed. miRNA analysis by real-time polymerase chain reaction (qPCR) revealed miRNAs associated with neuroinflammation were highly expressed in patients with neurological disorders and HHV-6 detection. When compared with the group of patients without detection of HHVs DNA and without neurological alterations, the group with detection of HHV-6 DNA and neurological alteration, displayed significant differences in the expression of mir-21, mir-146a, miR-155 and miR-let-7b (p < 0.01). Our results reinforce the involvement of miRNAs in neurological disorders and provide insights into their use as biomarkers for neurological disorders triggered by HHV-6. Furthermore, understanding the expression of miRNAs may contribute to therapeutic strategies.


Subject(s)
COVID-19 , Herpesviridae , Herpesvirus 6, Human , MicroRNAs , Humans , Herpesvirus 6, Human/genetics , MicroRNAs/genetics , SARS-CoV-2/genetics , COVID-19/complications , Herpesviridae/genetics , Real-Time Polymerase Chain Reaction , Biomarkers , DNA, Viral/genetics
4.
J Clin Med ; 12(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37109224

ABSTRACT

Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.

5.
J Clin Med ; 12(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37048652

ABSTRACT

Since COVID-19 was declared a pandemic, Brazil has become one of the countries most affected by this disease. A year into the pandemic, a second wave of COVID-19 emerged, with a rapid spread of a new SARS-CoV-2 lineage of concern. Several vaccines have been granted emergency-use authorization, leading to a decrease in mortality and severe cases in many countries. However, the emergence of SARS-CoV-2 variants raises the alert for potential new waves of transmission and an increase in pathogenicity. We compared the demographic and clinical data of critically ill patients infected with COVID-19 hospitalized in Rio de Janeiro during the first and second waves between July 2020 and October 2021. In total, 106 participants were included in this study; among them, 88% had at least one comorbidity, and 37% developed severe disease. Disease severity was associated with older age, pre-existing neurological comorbidities, higher viral load, and dyspnea. Laboratory biomarkers related to white blood cells, coagulation, cellular injury, inflammation, renal, and liver injuries were significantly associated with severe COVID-19. During the second wave of the pandemic, the necessity of invasive respiratory support was higher, and more individuals with COVID-19 developed acute hepatitis, suggesting that the progression of the second wave resulted in an increase in severe cases. These results can contribute to understanding the behavior of the COVID-19 pandemic in Brazil and may be helpful in predicting disease severity, which is a pivotal for guiding clinical care, improving patient outcomes, and defining public policies.

6.
Mem. Inst. Oswaldo Cruz ; 118: e230115, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1529020

ABSTRACT

BACKGROUND A positive Trypanosoma cruzi polymerase chain reaction (PCR) is associated with a worse prognosis in patients with chronic Chagas disease (CD). OBJECTIVES To study the association of clinical, electrocardiographic, and echocardiographic characteristics and biomarker blood levels with positive T. cruzi PCR in chronic CD. METHODS This is a single-centre observational cross-sectional study. Positive T. cruzi PCR association with clinical, electrocardiographic, and echocardiographic characteristics, and biomarker blood levels were studied by logistic regression analysis. p values < 0.05 were considered significant. FINDINGS Among 333 patients with chronic CD (56.4% men; 62 ± 10 years), T. cruzi PCR was positive in 41.1%. Stepwise multivariate logistic regression showed an independent association between positive T. cruzi PCR and diabetes mellitus {odds ratio (OR) 0.53 [95% confidence interval (CI) 0.30-0.93]; p = 0.03}, right bundle branch block [OR 1.78 (95% CI 1.09-2.89); p = 0.02], and history of trypanocidal treatment [OR 0.13 (95% CI 0.04-0.38); p = 0.0002]. Among patients with a history of trypanocidal treatment (n = 39), only four (10%) patients had a positive T. cruzi PCR. MAIN CONCLUSIONS Among several studied parameters, only diabetes mellitus, right bundle branch block, and history of trypanocidal treatment showed an independent association with positive T. cruzi PCR. History of trypanocidal treatment was a strong protective factor against a positive T. cruzi PCR.

8.
Mem Inst Oswaldo Cruz ; 117: e220005, 2022.
Article in English | MEDLINE | ID: mdl-36417626

ABSTRACT

BACKGROUND: Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES: The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS: The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS: In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS: We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.


Subject(s)
Chagas Disease , Vascular Endothelial Growth Factor A , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling , Chagas Disease/metabolism , Heart , Myocardium/pathology
9.
Virol J ; 19(1): 101, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676707

ABSTRACT

BACKGROUND: Certain clinical manifestations of coronavirus disease (COVID-19) mimic those associated with human herpesvirus (HHV) infection. In this study, we estimated the prevalence of herpesvirus in patients with COVID-19 and determined if coinfection is associated with poorer outcomes and neurological symptoms. METHODS: We analyzed samples of 53 patients diagnosed with COVID-19. The samples were evaluated for the presence of alphaherpesviruses, betaherpesviruses, and gammaherpesviruses, and the viral loads were quantified using quantitative polymerase chain reaction (qPCR) method. RESULTS: Among the patients, in 79.2% had detection at least one type of herpesvirus. HHV-6 (47.2%), cytomegalovirus (43.3%), and HHV-7 (39.6%) showed the highest detection rates. Patients with a high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) load were more likely to show herpes simplex virus 1 detection (p = 0.037). Among patients coinfected with SARS-CoV-2 and HHVs, 26.4% showed central nervous system-associated neurological symptoms and herpetic manifestations. A statistically significant association was observed between neurological changes and HHV-6 detection (p = 0.034). CONCLUSIONS: The findings showed a high prevalence of herpesvirus in patients with COVID-19. Furthermore, even though SARS-CoV-2 and HHV coinfection was not associated with poorer outcomes, the findings demonstrated the association between neurological symptoms and HHV-6 detection.


Subject(s)
COVID-19 , Herpesviridae Infections , Herpesviridae , Herpesvirus 6, Human , Herpesvirus 7, Human , COVID-19/complications , Cytomegalovirus , Herpesviridae Infections/complications , Herpesviridae Infections/epidemiology , Humans , SARS-CoV-2
10.
Mem. Inst. Oswaldo Cruz ; 117: e220005, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1406002

ABSTRACT

BACKGROUND Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.

11.
Mem Inst Oswaldo Cruz ; 115: e200113, 2020.
Article in English | MEDLINE | ID: mdl-33111757

ABSTRACT

BACKGROUND: Lutzomyia longipalpis-derived cell line (Lulo) has been suggested as a model for studies of interaction between sandflies and Leishmania. OBJECTIVES: Here, we present data of proteomic and gene expression analyses of Lulo cell related to interactions with Leishmania (Viannia) braziliensis. METHODS: Lulo cell protein extracts were analysed through a combination of two-dimensional gel electrophoresis and mass spectrometry and resulting spots were further investigated in silico to identify proteins using Mascot search and, afterwards, resulting sequences were applied for analysis with VectorBase. RESULTS: Sixty-four spots were identified showing similarities to other proteins registered in the databases and could be classified according to their biological function, such as ion-binding proteins (23%), proteases (14%), cytoskeletal proteins (11%) and interactive membrane proteins (9.5%). Effects of interaction with L. (V.) braziliensis with the expression of three genes (enolase, tubulin and vacuolar transport protein) were observed after an eight-hour timeframe and compared to culture without parasites, and demonstrated the impact of parasite interaction with the expression of the following genes: LLOJ000219 (1.69-fold), LLOJ000326 (1.43-fold) and LLOJ006663 (2.41-fold). CONCLUSIONS: This set of results adds relevant information regarding the usefulness of the Lulo cell line for studies with Leishmania parasites that indicate variations of protein expression.


Subject(s)
Leishmania braziliensis , Leishmania , Proteomics , Psychodidae , Animals , Cell Line , Leishmania/genetics , Leishmania braziliensis/genetics , Psychodidae/parasitology , Transcriptome
12.
Arch Biochem Biophys ; 570: 58-65, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25721495

ABSTRACT

The isoquinoline alkaloid chelerythrine is described as an inhibitor of SERCA. The ATPase inhibition presented two non-competitive components, Ki1=1, 2 µM and Ki2=26 µM. Conversely, chelerythrine presented a dual effect on the p-nitrophenylphosphatase (pNPPase) of SERCA. Ca(2+)-dependent pNPPase was activated up to ∼5 µM chelerythrine with inhibition thereafter. Ca(2+)-independent pNPPase was solely inhibited. The phosphorylation of SERCA with ATP reached half-inhibition with 10 µM chelerythrine and did not parallel the decrease of ATPase activity. In contrast, chelerythrine up to 50 µM increased the phosphorylation by Pi. Cross-linking of SERCA with glutaraldehyde was counteracted by high concentrations of chelerythrine. The controlled tryptic digestion of SERCA shows that the low-affinity binding of chelerythrine evoked an E2-like pattern. Our data indicate a non-competitive inhibition of ATP hydrolysis that favors buildup of the E2-conformers of the enzyme. Chelerythrine as low as 0.5-1.5 µM resulted in an increase of intracellular Ca(2+) on cultured PBMC cells. The inhibition of SERCA and the loss of cell Ca(2+) homeostasis could in part be responsible for some described cytotoxic effects of the alkaloid. Thus, the choice of chelerythrine as a PKC-inhibitor should consider its potential cytotoxicity due to the alkaloid's effects on SERCA.


Subject(s)
Benzophenanthridines/chemistry , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Adenosine Triphosphate/chemistry , Animals , Benzophenanthridines/metabolism , Binding Sites , Glutaral/chemistry , Humans , Hydrolysis , Inhibitory Concentration 50 , Leukocytes, Mononuclear/cytology , Monocytes/metabolism , Muscle, Skeletal/enzymology , Phosphorylation , Protein Binding , Protein Conformation , Rabbits , Trypsin/chemistry
13.
Am J Pathol ; 179(4): 1894-904, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21819958

ABSTRACT

Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.


Subject(s)
Chagas Disease/pathology , Chagas Disease/parasitology , Mast Cells/pathology , Mast Cells/parasitology , Trypanosoma cruzi/physiology , Animals , Cell Count , Cell Death/drug effects , Cromolyn Sodium/pharmacology , Fas Ligand Protein/metabolism , Interleukin-3/metabolism , Male , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Myocardium/pathology , Peritoneum/drug effects , Peritoneum/pathology , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Stem Cell Factor/metabolism , Transcription, Genetic/drug effects , Trypanosoma cruzi/drug effects , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...