Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171480, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38492607

ABSTRACT

The ability of aquatic organisms to sense the surrounding environment chemically and interpret these signals correctly is crucial to their survival and ecological niche. This study applied the Heterogenous Multi-Habitat Assay System - HeMHAS to evaluate the avoidance potential of Daphnia magna to detect fipronil-contaminated habitats in a connected landscape after a short (48 h), previous, forced exposure to an environmentally relevant concentration of the same insecticide. The swimming of daphnids was also analyzed by recording the total distance covered. D. magna preferred areas with less contamination, although the effect of fipronil on their swimming ability (a decrease) was observed for all the concentrations tested. The application of non-forced multi-compartment exposure methodologies is a recent trend and is ecologically relevant as it is based on how contamination can really produce changes in an organism's habitat selection. Finally, we consider the importance of more non-forced exposure approaches where Stress Ecology can be aggregated to improve systemic understanding of the risk that contaminants pose to aquatic ecosystems from a broader landscape perspective.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/analysis , Insecticides/toxicity , Pyrazoles/toxicity , Daphnia
2.
Sci Total Environ ; 888: 164259, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37201850

ABSTRACT

Sugarcane is one of the main monocultures in Brazil and widely uses herbicide 2,4-D and fipronil insecticide. In addition, vinasse can be mentioned as it is widely used in this plantation. These compounds occurring simultaneously in the aquatic environment can potentiate the deleterious effects on organisms. Thus, this study aimed to evaluate the composition, abundance and ecological indices of the benthic macroinvertebrate community, as well as its ability to reestablish itself considering environmental contamination by the pesticides Regent® 800WG (active ingredient - a.i. fipronil) (F) and DMA® 806BR (a.i. 2,4-D) (D) and vinasse (V), alone and in mixtures: pesticides - M and the three contaminants - MV. The study was conducted using open-air mesocosms. The macroinvertebrate community was monitored by colonization structures, the physical-chemical parameters, metals and pesticides were determined and the effects of contaminants were evaluated over the exposure time in 1, 7, 14, 28, 75 to 150 days. A multiple regression was performed between the water parameters and significant relationships were found between parameters associated with vinasse contamination (pH, total nitrogen, turbidity, and dissolved oxygen) and concentration of fipronil and the ecological variables studied. Over time, changes were observed in the composition of the community. The dominance and richness increased in treatments V and MV. The family Chironomidae and subclass Oligochaeta were more sensitive to the treatment V and MV, while individuals from the families Phoridae, Ephydridae and Sciomyzidae were occasionally found (depending on the experimental time) in these treatments. The insects were sensitive to treatments F and M, disappearing in these mesocosms after contamination, reappearing only after 75 days. The results reveal that sugarcane management practices associated with the use of pesticides and vinasse as fertilizer pose risks to the macroinvertebrate community with consequences for the trophic chains, given its importance in freshwater ecosystems and adjacent terrestrial environments.


Subject(s)
Herbicides , Pesticides , Water Pollutants, Chemical , Humans , Ecosystem , Pesticides/analysis , 2,4-Dichlorophenoxyacetic Acid
3.
Environ Sci Pollut Res Int ; 30(23): 63479-63490, 2023 May.
Article in English | MEDLINE | ID: mdl-37052836

ABSTRACT

In Brazil, among the pesticides widely applied simultaneously in sugarcane monocultures are the Regent® 800 WG insecticide (active ingredient (a.i.) fipronil) and the DMA® 806 BR herbicide (a.i. 2,4-D). Thus, this study aimed to investigate, through different endpoints, the effects of the fipronil and 2,4-D pesticides, isolated and as mixtures, on the cladoceran Daphnia similis. To do this, acute toxicity tests were carried out with the compounds acting in isolation and in mixture, where the survival of the organisms was evaluated, and chronic toxicity tests with the isolated compounds, where reproduction and maternal and neonatal body length were evaluated. In this study, the physiological endpoints of D. similis were also analyzed, through the analysis of feeding rates (filtration and ingestion) in exposure and post-exposure scenarios, in order to verify the cladoceran food recovery capacity. In addition, D. similis data were compared with other species when exposed to the studied pesticides, using species sensitivity distribution curves. Acute toxicity tests of the fipronil and 2,4-D showed an average EC50-48 h of 66.68 µg a.i./L and 327.07 mg a.i./L, respectively. In both cases, D. similis showed lower sensitivity compared to other species. For the mixture test, the evaluation by the IA model (independent action) and deviation DR (dose ratio dependent) indicated the occurrence of mostly antagonistic effects. The chronic test with fipronil showed a decrease in the fecundity of the organism at a concentration of 16 µg a.i./L, a concentration already found in aquatic environments. For 2,4-D, no significant differences were observed for reproduction at the concentrations tested. Regarding the maternal body length, there were no significant changes when D. similis were exposed to both fipronil and 2,4-D, but these differences were observed in the body length of the neonates only for 2,4-D. There were no significant changes in the feeding rates of the organisms when exposed to both pesticides.


Subject(s)
Herbicides , Pesticides , Water Pollutants, Chemical , Animals , Pesticides/toxicity , Daphnia , Herbicides/toxicity , 2,4-Dichlorophenoxyacetic Acid/toxicity , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 310: 136719, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36206917

ABSTRACT

The high levels of contamination in aquatic ecosystems caused by pesticides and the organisms' consequent continuous exposure to it has made them vulnerable to damage. However, mobile organisms can avoid this continued exposure to contaminants by moving to less disturbed habitats. Therefore, through the use of the Heterogenous Multi-Habitat Assay System (HeMHAS), our objective was to evaluate the ability of Daphnia magna to detect and avoid habitats contaminated by fipronil and 2,4-D, in a spatially connected landscape. Further, the role of contamination by these pesticides, isolated and in mixtures, concerning the colonization of habitats by daphnids was also evaluated. Given that not all organisms successfully escape contamination, the chronic toxicity of the same pesticides using different parameters for D. magna (maternal survival, fecundity and maternal body length) was also evaluated. When evaluating the avoidance response by D. magna exposed to pesticides, there was no preference for the less contaminated areas for both compounds. However, organisms did not move to contaminated zones in the colonization experiments, with no immigration of daphnids to the zones with intermediate and the highest levels of fipronil, nor to the highest concentration of 2,4-D. Finally, the colonization by daphnids was significantly prevented when exposed to a mixture of the pesticides, in which the areas with the highest combinations of pesticide concentrations were not colonized by D. magna. Regarding the long-term chronic effects, negative consequences were observed, particularly for maternal body length, fecundity and maternal survival, due to the exposure to fipronil. Considering that pesticides can limit the areas colonized by organisms by making them unattractive, the risk of local population extinction may be underestimated if only standard endpoints involving forced exposure are studied.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Daphnia/physiology , Pesticides/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , 2,4-Dichlorophenoxyacetic Acid/toxicity
5.
Sci Total Environ ; 847: 157525, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35872193

ABSTRACT

Temperature variations and thermal extremes events caused by climate change can have profound implications for the toxicity of pesticides in aquatic organisms. Using an innovative system (Heterogeneous Multi-Habitat Test System - HeMHAS) that allows the simulation of different scenarios within a spatially heterogeneous landscape, the effects on the habitat selection of Danio rerio fish caused by the pesticides fipronil and 2,4-D were studied as single compounds and in mixture and integrated with air temperature variation (20, 24 and 28 °C). As a result, D. rerio detected and avoided both pesticides at air temperatures of 20 and 24 °C; however, at 28 °C no significant difference was observed in habitat choice by fish. Additionally, when pesticides were mixed in a heterogeneously contaminated landscape, it was observed that D. rerio detected contamination and preferred the clean zone at 20 and 24 °C; however, at 28 °C the potential to escape from the most contaminated areas was impaired. Thus, contamination by both pesticides made the habitat selection behavior of fish at 20 and 24 °C more noticeable. In addition, the association between pesticides and temperature showed negative effects on the response of fish to detect and escape from contaminated environments, suggesting the influence of temperature in altering the ability of the organism to provide an efficient response to stress.


Subject(s)
Pesticides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Animals , Climate Change , Ecosystem , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology
6.
Aquat Toxicol ; 241: 106017, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773901

ABSTRACT

With the growing use of agrochemicals in Brazil, there is also a growing need for more realistic toxicity assessments that aid in understanding the potential risks of environmental-realistic agrochemical (mixture) exposures in the natural ecosystems. The aim of the present study was therefore to evaluate the lethal and sublethal effects of environmental realistic (single and mixture) concentrations of the pesticides DMA® 806 BR (active ingredient - a.i. 2,4-D) and Regent® 800 WG (a.i. fipronil) and sugarcane vinasse to the Neotropical cladoceran Ceriodaphnia silvestrii. This evaluation was carried out through lethal (survival), sublethal (reproduction and intrinsic rates of population increase - r) and post-exposure (feeding rate and also reproduction) tests conducted in situ and with water from mesocosms contaminated with the recommended doses of these compounds. The results showed high acute toxicity for treatments containing fipronil and vinasse when acting in isolation, with survival rates only returning to control values on the last sampling day (75 days post application). Reproduction of surviving cladocerans was reduced in all treatments until the end of the experiment and were potentiated effect in the mixture of the three test compounds. The intrinsic rates of population increase were reduced in all treatments except the single 2,4-D treatment. Post-exposure feeding rate and reproduction, however, were not impaired under the conditions analyzed. The results show the high toxicity of recommended doses of fipronil and vinasse (and especially their mixture) and the importance of evaluating the risks of agrochemical mixtures at environmental-realistic concentrations.


Subject(s)
Cladocera , Pesticides , Saccharum , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/toxicity
7.
Ecotoxicology ; 29(9): 1462-1475, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860623

ABSTRACT

Brazil is the largest producer of sugarcane and the world's top pesticide market. Therefore, environmental consequences are of concern. The aim of the present study was to evaluate the acute and chronic toxicity of pesticide formulations largely used in sugarcane crops: the herbicide DMA® 806 BR (a.i. 2,4-D) and the insecticide Regent® 800 WG (a.i. fipronil), isolated and in mixture, to the Neotropical cladoceran Ceriodaphnia silvestrii. Toxicity tests with the individual formulated products indicated 48h-EC50 values of 169 ± 18 mg a.i./L for 2,4-D and 3.9 ± 0.50 µg a.i./L for fipronil. In the chronic tests, the 8d-EC50 values for reproduction were 55 mg a.i./L (NOEC/LOEC: 50/60 mg a.i./L) and 1.6 µg a.i./L (NOEC/LOEC: 0.40/0.80 µg a.i./L) for 2,4-D and fipronil, respectively. A significant decrease in reproduction of C. silvestrii in all concentrations tested of fipronil, except at the lowest, was observed. Regarding 2,4-D, the organisms had total inhibition of reproduction in the two highest concentrations. Probably your energy reallocation was focused (trade-off) only on its survival. The acute pesticide mixture toxicity (immobility) revealed a dose level dependent deviation with antagonism at low and synergism at high concentrations. For chronic mixture (reproduction) toxicity, antagonism occurred as a result of the interaction of the pesticides. Based on our results and concentrations measured in Brazilian water bodies, fipronil represents ecological risks for causing direct toxic effects on C. silvestrii. These results are worrisome given that agricultural production is likely to increase in the coming years.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Cladocera/physiology , Pesticides/toxicity , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brazil , Ecosystem , Insecticides , Reproduction , Toxicity Tests , Toxicity Tests, Chronic
8.
Ecotoxicol Environ Saf ; 201: 110829, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32531577

ABSTRACT

The toxicity of the insecticide carbofuran and herbicide diuron (individually and in mixture) to the invertebrates Paramecium caudatum and Ceriodaphnia silvestrii was evaluated. Acute and chronic toxicity tests were carried out with the diuron and carbofuran active ingredients and their commercial products, Diuron Nortox® 500 SC and Furadan® 350 SC, respectively. Individual toxicity tests showed that C. silvestrii was more sensitive to both carbofuran and diuron than P. caudatum. In single exposures, both pesticides caused adverse effects to C. silvestrii in environmentally relevant concentrations (48 h EC50 = 0.001 mg L-1 and 8 d LOEC = 0.00038 mg L-1 for formulated carbofuran; 8 d LOEC < 0.05 mg L-1 for formulated diuron). For P. caudatum, carbofuran and diuron in single exposures were only slightly toxic (24 h IC50 = 5.1 mg L-1 and 6.9 mg L-1 for formulated carbofuran and diuron, respectively). Acute and chronic exposures to diuron and carbofuran mixtures caused significant deviations of the toxicity predicted by the Concentration Addition and Independent Action reference models for both test species. For the protozoan P. caudatum, a dose-dependent deviation was verified for mortality, with synergism caused mainly by carbofuran and antagonism caused mainly by diuron. For protozoan population growth, however, an antagonistic deviation was observed when the active ingredient mixtures were tested. In the case of C. silvestrii, antagonism at low concentrations and synergism at high concentrations were revealed after acute exposure to active ingredient mixtures, whereas for reproduction an antagonistic deviation was found. Commercial formulation mixtures presented significantly higher toxicity than the active ingredient mixtures. Our results showed that carbofuran and diuron interact and cause different toxic responses than those predicted by the individually tested compounds. Their mixture toxicity should therefore be considered in risk assessments as these pesticides are likely to be present simultaneously in edge-of-field waterbodies.


Subject(s)
Carbofuran/toxicity , Cladocera/drug effects , Cladocera/physiology , Diuron/toxicity , Paramecium caudatum/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Drug Synergism , Toxicity Tests
9.
Environ Sci Pollut Res Int ; 25(14): 13335-13346, 2018 May.
Article in English | MEDLINE | ID: mdl-28004367

ABSTRACT

In order to contribute to the increase of the body of knowledge on the sensitivity of tropical indigenous species to pesticides, acute and chronic toxicity tests were conducted with the neotropical cladoceran Ceriodaphnia silvestrii. Tests were carried out with the active ingredients diuron and carbofuran and one of their commercial formulations, the Diuron Nortox® 500 SC and the Furadan® 350 SC, respectively. For carbofuran, the active ingredient was more toxic than the commercial product, whereas for diuron, the commercial product appeared more toxic. In addition, hormetic effects on fertility were recorded for intermediate diuron concentrations. Acute and chronic toxicity data indicated that C. silvestrii was among the most sensitive invertebrate species for both test compounds. Based on concentrations measured in Brazilian water bodies, these compounds represent ecological risks for causing direct and indirect toxic effects on C. silvestrii and other aquatic organisms. Our results support previous claims on the advantages of using native species to better tune ecological risk assessment of chemicals in tropical ecosystems.


Subject(s)
Carbofuran/chemistry , Cladocera/drug effects , Diuron/chemistry , Pesticides/chemistry , Animals , Brazil , Cladocera/chemistry , Ecology , Ecosystem , Pesticides/pharmacology
10.
Ecotoxicol Environ Saf ; 142: 312-321, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28433596

ABSTRACT

In aquatic environments, organisms are often exposed to mixtures of several pesticides. In this study, the effects of carbofuran and diuron and their mixtures on the microalgae Raphidocelis subcapitata were investigated. For this purpose, toxicity tests were performed with the single compounds (active ingredients and commercial formulations) and their combinations (only active ingredients). According to the results, the toxicity of active ingredients and their commercial formulations to R. subcapitata was similar. In the single exposures, both carbofuran and diuron inhibited significantly the R. subcapitata growth and caused physiological (chlorophyll a content) and morphological (complexity and cell size) changes in cells, as captured by flow cytometry single-cell properties. Regarding the mixture toxicity tests, data fitted to both reference models, concentration addition (CA) and independent action (IA), and evidenced significant deviations. After the CA fitting, dose-ratio dependent deviation had the best fit to the data, demonstrating synergism caused mainly by diuron and antagonism caused mainly by carbofuran. After fitting the IA model, a synergistic deviation represented the best fit for the diuron and carbofuran mixtures. In general, the two reference models indicated the occurrence of synergism in the mixtures of these compounds, especially when diuron was the dominant chemical in the combinations. The increased toxicity caused by the mixture of these pesticides could pose a greater environmental risk for phytoplankton. Thus, exposure to diuron and carbofuran mixtures must also be considered in risk assessments, since the combination of these compounds may result in more severe effects on algae population growth than single exposures.


Subject(s)
Carbofuran/toxicity , Chlorophyta/drug effects , Diuron/toxicity , Microalgae/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Carbofuran/analysis , Chlorophyll/metabolism , Chlorophyll A , Chlorophyta/metabolism , Diuron/analysis , Drug Synergism , Microalgae/metabolism , Pesticides/chemistry , Phytoplankton/drug effects , Toxicity Tests , Water Pollutants, Chemical/analysis
11.
An Acad Bras Cienc ; 88 Suppl 1: 579-88, 2016.
Article in English | MEDLINE | ID: mdl-27168371

ABSTRACT

This paper describes experimental results on the life cycle of the rotifer Philodina roseola cultured in the laboratory. Detailed information on life-cycle parameters of a certain species provides a deep understanding and contributes to a better knowledge of the role of the species in the community, besides providing data that are basic to other ecological investigations such as secondary production estimates and knowledge for applications such as its utilization as test-organism in ecotoxicological studies. The average duration of embryonic development of P. roseola was 23.88 h, the age at maturity of primipara was 3.5 days and the maximum lifespan was 23 days. The average size of the rotifer neonate was 198.77 µm, the mean size of primipara was 395.56 µm and for adults 429.96 µm. The average fecundity was 1.22 eggs per female per day and the mean number of eggs produced per female during the entire life was 22.33. The deceleration of somatic growth from the start of the reproductive stage represents a trade-off between growth and reproduction that is often seen in micrometazoans. The life history of P. roseola follows the strategy of other bdelloid species characterized by a rapid pre-reproductive development and canalization of most assimilated energy to reproduction after reaching maturity. The differences observed in total fecundity and longevity between our P. roseola cultures and those from previous studies were probably due to differences of intrinsic adaptation of this species ecotypes to the conditions of their natural environments.


Subject(s)
Life Cycle Stages , Rotifera/growth & development , Animals , Biological Assay , Female , Reproduction , Time Factors
12.
Environ Pollut ; 213: 160-172, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26890484

ABSTRACT

Toxic effects of diuron and carbofuran on Paramecium caudatum were evaluated. Acute and chronic tests were conducted with diuron and carbofuran active ingredients and their commercial formulations, Diuron Nortox(®) 500 SC and Furadan(®) 350 SC, respectively. The sensitivity range of P. caudatum to reference substance sodium chloride was established. A preliminary risk assessment of diuron and carbofuran for Brazilian water bodies was performed. The tests indicated that toxicity of pure diuron and its commercial formulation was similar, while the commercial product carbofuran was more toxic than its pure form. In acute tests, readings were carried out at 2, 3, 4 and 6 h and showed an increase of mortality with increasing exposure time. The sensitivity of P. caudatum to NaCl ranged from 3.31 to 4.44 g L(-1), averaging 3.88 g L(-1). For diuron, the 6 h LC50 was 64.6 ± 3.3 mg L(-1) for its pure form and 62.4 ± 2.5 mg L(-1) for its commercial formulation. Carbofuran active ingredient was less toxic than that of diuron, presenting a 6 h LC50 of 142.0 ± 2.4 mg L(-1) for its pure form and 70.4 ± 2.2 mg L(-1) for its commercial product. Chronic tests showed that these pesticides cause significant decrease on population growth, generation number and biomass of P. caudatum. The 24 h IC50 was 7.10 ± 0.58 mg L(-1) for pure diuron, 6.78 ± 0.92 mg L(-1) for commercial diuron, 22.95 ± 3.57 mg L(-1) for pure carbofuran and 4.98 ± 0.62 mg L(-1) for commercial carbofuran. Preliminary risk assessment indicated that diuron and carbofuran present potential ecological risks for Brazilian water bodies. P. caudatum was a suitable and sensitive test organism to evaluate diuron and carbofuran toxicity to freshwater protozooplankton and, taking into account the relevant role of protozoans in aquatic environments, we strongly recommend its inclusion in ecotoxicological studies.


Subject(s)
Carbofuran/toxicity , Diuron/toxicity , Ecotoxicology/methods , Environmental Monitoring/methods , Paramecium caudatum/drug effects , Pesticides/toxicity , Brazil , Fresh Water/chemistry , Fresh Water/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...