Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 22(6): 3988-96, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24859693

ABSTRACT

Theoretical papers and environmental applications of hydrophilic interaction liquid chromatography (HILIC) have been published for a wide range of analytes, but to our knowledge, no study focused on acidic herbicides (e.g., triketones, phenoxy acids, sulfonylurea, and acidic metabolites of chloroacetanilides). Matrix effects are the main obstacle to natural sample analysis by liquid chromatography coupled with tandem mass spectrometry (MS) via an electrospray ionization (ESI) interface. Therefore, we paid particular attention on limiting interference by (i) adapting the emerging HILIC technique, which is generally considered more sensitive than conventional reversed phase liquid chromatography and (ii) optimizing the solid phase extraction (SPE) step using a design of experiment. A rapid and reliable off line SPE-HILIC-ESI-MS/MS method was thus developed for the quantification of acidic herbicides in fresh water, with limits of quantifications (LOQs) ranging from 5 to 22 ng L(-1). Then, the analysis of freshwater samples highlighted the robustness of the method, and the importance of the chloroacetanilides metabolites among the studied analytes.


Subject(s)
Chromatography, Liquid/methods , Fresh Water/chemistry , Herbicides/analysis , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Acids/analysis , Hydrophobic and Hydrophilic Interactions , Solid Phase Extraction/methods , Sulfonylurea Compounds/analysis
2.
Environ Sci Technol ; 44(5): 1713-9, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20108959

ABSTRACT

Passive samplers such as the Polar Organic Chemical Integrative Sampler (POCIS) are useful tools for monitoring trace levels of polar organic chemicals in aquatic environments. The use of performance reference compounds (PRC) spiked into the POCIS adsorbent for in situ calibration may improve the semiquantitative nature of water concentration estimates based on this type of sampler. In this work, deuterium labeled atrazine-desisopropyl (DIA-d5) was chosen as PRC because of its relatively high fugacity from Oasis HLB (the POCIS adsorbent used) and our earlier evidence of its isotropic exchange. In situ calibration of POCIS spiked with DIA-d5 was performed, and the resulting time-weighted average concentration estimates were compared with similar values from an automatic sampler equipped with Oasis HLB cartridges. Before PRC correction, water concentration estimates based on POCIS data sampling rates from a laboratory calibration exposure were systematically lower than the reference concentrations obtained with the automatic sampler. Use of the DIA-d5 PRC data to correct POCIS sampling rates narrowed differences between corresponding values derived from the two methods. Application of PRCs for in situ calibration seems promising for improving POCIS-derived concentration estimates of polar pesticides. However, careful attention must be paid to the minimization of matrix effects when the quantification is performed by HPLC-ESI-MS/MS.


Subject(s)
Fresh Water/analysis , Herbicides/analysis , Water Pollutants, Chemical/analysis , Adsorption , Automation , Chromatography, High Pressure Liquid , Environmental Monitoring/methods , Kinetics , Models, Theoretical , Organic Chemicals/analysis , Pesticide Residues/analysis , Pesticides/analysis , Specimen Handling/methods , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...