Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters











Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L452-L463, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39104318

ABSTRACT

Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.


Subject(s)
Hypoxia , Kolliker-Fuse Nucleus , Animals , Kolliker-Fuse Nucleus/metabolism , Mice , Male , Hypoxia/physiopathology , Hypoxia/metabolism , Respiration , Neurons/metabolism , Neurons/physiology , Hypercapnia/physiopathology , Hypercapnia/metabolism
2.
Pflugers Arch ; 476(11): 1665-1676, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39150501

ABSTRACT

Aging invariably decreases sensory and motor stimuli and affects several neuronal systems and their connectivity to key brain regions, including those involved in breathing. Nevertheless, further investigation is needed to fully comprehend the link between senescence and respiratory function. Here, we investigate whether a mouse model of accelerated senescence could develop central and peripheral respiratory abnormalities. Adult male Senescence Accelerated Mouse Prone 8 (SAMP8) and the control SAMR1 mice (10 months old) were used. Ventilatory parameters were assessed by whole-body plethysmography, and measurements of respiratory input impedance were performed. SAMP8 mice exhibited a reduction in the density of neurokinin-1 receptor immunoreactivity in the entire ventral respiratory column. Physiological experiments showed that SAMP8 mice exhibited a decreased tachypneic response to hypoxia (FiO2 = 0.08; 10 min) or hypercapnia (FiCO2 = 0.07; 10 min). Additionally, the ventilatory response to hypercapnia increased further due to higher tidal volume. Measurements of respiratory mechanics in SAMP8 mice showed decreased static compliance (Cstat), inspiratory capacity (IC), resistance (Rn), and elastance (H) at different ages (3, 6, and 10 months old). SAMP8 mice also have a decrease in contractile response to methacholine compared to SAMR1. In conclusion, our findings indicate that SAMP8 mice display a loss of the NK1-expressing neurons in the respiratory brainstem centers, along with impairments in both central and peripheral respiratory mechanisms. These observations suggest a potential impact on breathing in a senescence animal model.


Subject(s)
Aging , Hypercapnia , Receptors, Neurokinin-1 , Animals , Mice , Male , Aging/physiology , Receptors, Neurokinin-1/metabolism , Hypercapnia/physiopathology , Hypercapnia/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Respiratory Mechanics/physiology , Disease Models, Animal , Respiration
3.
Exp Neurol ; 380: 114924, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147260

ABSTRACT

Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.


Subject(s)
Hypoxia , Oxidopamine , Rats, Wistar , Solitary Nucleus , Animals , Male , Rats , Solitary Nucleus/pathology , Hypoxia/pathology , Oxidopamine/toxicity , Homeodomain Proteins/metabolism , Disease Models, Animal , Nerve Degeneration/pathology , Neurons/pathology , Parkinsonian Disorders/pathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Transcription Factors/metabolism
4.
Epilepsy Behav ; 157: 109848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823073

ABSTRACT

OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.


Subject(s)
Disease Models, Animal , Electroencephalography , Epilepsy , Sleep Apnea, Obstructive , Wakefulness , Animals , Wakefulness/physiology , Male , Epilepsy/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Rats , Chronic Disease , Pilocarpine/toxicity , Brain Stem/physiopathology , Heart Rate/physiology , Electromyography , Rats, Sprague-Dawley , Rats, Wistar
6.
Exp Physiol ; 109(11): 1837-1843, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38153366

ABSTRACT

At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.


Subject(s)
Carbon Dioxide , Chemoreceptor Cells , Chemoreceptor Cells/metabolism , Chemoreceptor Cells/physiology , Animals , Humans , Carbon Dioxide/metabolism , Neurons/physiology , Neurons/metabolism , Vasoconstriction/physiology , Respiration , Vasodilation/physiology
7.
Brain Res ; 1822: 148586, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37757967

ABSTRACT

Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.


Subject(s)
Parkinson Disease , Humans , Mice , Animals , Male , Oxidopamine/pharmacology , Receptors, Tumor Necrosis Factor, Type I , Neuroinflammatory Diseases , Mice, Inbred C57BL , Inflammation/complications , Disease Models, Animal , Dopaminergic Neurons
8.
PNAS Nexus ; 2(2): pgad014, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36874271

ABSTRACT

Uncontrolled vasodilation is known to account for hypotension in the advanced stages of sepsis and other systemic inflammatory conditions, but the mechanisms of hypotension in earlier stages of such conditions are not clear. By monitoring hemodynamics with the highest temporal resolution in unanesthetized rats, in combination with ex-vivo assessment of vascular function, we found that early development of hypotension following injection of bacterial lipopolysaccharide is brought about by a fall in vascular resistance when arterioles are still fully responsive to vasoactive agents. This approach further uncovered that the early development of hypotension stabilized blood flow. We thus hypothesized that prioritization of the local mechanisms of blood flow regulation (tissue autoregulation) over the brain-driven mechanisms of pressure regulation (baroreflex) underscored the early development of hypotension in this model. Consistent with this hypothesis, an assessment of squared coherence and partial-directed coherence revealed that, at the onset of hypotension, the flow-pressure relationship was strengthened at frequencies (<0.2 Hz) known to be associated with autoregulation. The autoregulatory escape to phenylephrine-induced vasoconstriction, another proxy of autoregulation, was also strengthened in this phase. The competitive demand that drives prioritization of flow over pressure regulation could be edema-associated hypovolemia, as this became detectable at the onset of hypotension. Accordingly, blood transfusion aimed at preventing hypovolemia brought the autoregulation proxies back to normal and prevented the fall in vascular resistance. This novel hypothesis opens a new avenue of investigation into the mechanisms that can drive hypotension in systemic inflammation.

9.
Neuroscience ; 512: 32-46, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36690033

ABSTRACT

Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.


Subject(s)
Parkinson Disease , Pedunculopontine Tegmental Nucleus , Male , Mice , Animals , Parkinson Disease/metabolism , Oxidopamine , Hypercapnia/metabolism , Dopaminergic Neurons/metabolism , Cholinergic Agents , Hypoxia/metabolism
10.
Elife ; 112022 11 17.
Article in English | MEDLINE | ID: mdl-36394266

ABSTRACT

Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control is incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect (a) respiratory rhythm; (b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR); and (c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR, was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH--expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid nucleus [RTN] region) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Homeodomain Proteins , Hypercapnia , Sleep Apnea, Central , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypercapnia/genetics , Hypoxia/genetics , Mice, Transgenic , Mutation , Sleep Apnea, Central/genetics , Homeodomain Proteins/genetics
11.
Acta Physiol (Oxf) ; 236(3): e13864, 2022 11.
Article in English | MEDLINE | ID: mdl-35959519

ABSTRACT

AIM: Sympathoexcitation and sleep-disordered breathing are common contributors for disease progression. Catecholaminergic neurons from the rostral ventrolateral medulla (RVLM-C1) modulate sympathetic outflow and have anatomical projections to respiratory neurons; however, the contribution of highly selective activation of RVLM-C1 neurons on long-term autonomic and breathing (dys)regulation remains to be understood. METHODS: To explore this relationship, a lentiviral vector carrying the light-sensitive cation channel channelrhodopsin-2 (LVV-PRSX8-ChR2-YFP) was unilaterally injected into the RVLM of healthy rats. On the contralateral side, LVV-PRSX8-ChR2-YFP was co-injected with a specific immunotoxin (DßH-SAP) targeted to eliminate C1 neurons. RESULTS: Intermittent photostimulation of RVLM-C1 in vivo, in unrestrained freely moving rats, elicited long-term facilitation of the sympathetic drive, a rise in blood pressure and sympatho-respiratory coupling. In addition, photoactivation of RVLM-C1 induced long-lasting ventilatory instability, characterized by oscillations in tidal volume and increased breathing variability, but only during non-rapid eye movement sleep. These effects were not observed when photostimulation of the RVLM was performed in the presence of DßH-SAP toxin. CONCLUSIONS: The finding that intermittent activation of RVLM-C1 neurons induces autonomic and breathing dysfunction suggest that episodic stimulation of RVLM-C1 may serve as a pathological substrate for the long-term development of cardiorespiratory disorders.


Subject(s)
Immunotoxins , Rats , Animals , Channelrhodopsins , Blood Pressure/physiology , Neurons/physiology , Sleep
12.
Exp Physiol ; 107(11): 1349-1359, 2022 11.
Article in English | MEDLINE | ID: mdl-36030407

ABSTRACT

NEW FINDINGS: What is the central question of this study? How does the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? The results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced neurokinin-1 density in the pre-Bötzinger complex and Bötzinger complex, and there was an incremental effect of 6-OHDA and ovariectomy on retrotrapezoid nucleus neurons. ABSTRACT: Emerging evidence indicates that the course of Parkinson's disease (PD) includes autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized (OVX) female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor density in the rostral ventrolateral respiratory group, Bötzinger and pre-Bötzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-OVX rats. Concerning respiratory parameters, in OVX rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation ( V ̇ E ${\dot V_{\rm{E}}}$ ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of retrotrapezoid nucleus Phox2b neurons and hypercapnia-induced respiratory changes in PD-OVX animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model.


Subject(s)
Parkinson Disease , Rats , Female , Male , Animals , Oxidopamine , Hypercapnia , Rats, Wistar , Hormones , Disease Models, Animal
13.
Brain Res Bull ; 187: 138-154, 2022 09.
Article in English | MEDLINE | ID: mdl-35777704

ABSTRACT

Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.


Subject(s)
Parkinson Disease , Adenosine Triphosphate , Animals , Carbon Dioxide/metabolism , Proteomics , Rats , Rats, Wistar
14.
Brain Res ; 1791: 147995, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35779583

ABSTRACT

Growth hormone (GH)-responsive neurons regulate several homeostatic behaviors including metabolism, energy balance, arousal, and stress response. Therefore, it is possible that GH-responsive neurons play a role in other responses such as CO2/H+-dependent breathing behaviors. Here, we investigated whether central GH receptor (GHR) modulates respiratory activity in conscious unrestrained mice. First, we detected clusters of GH-responsive neurons in the tyrosine hydroxylase-expressing cells in the rostroventrolateral medulla (C1 region) and within the locus coeruleus (LC). No significant expression was detected in phox2b-expressing cells in the retrotrapezoid nucleus. Whole body plethysmography revealed a reduction in the tachypneic response to hypoxia (FiO2 = 0.08) without changing baseline breathing and the hypercapnic ventilatory response. Contrary to the physiological findings, we did not find significant differences in the number of fos-activated cells in the nucleus of the solitary tract (NTS), C1, LC and paraventricular nucleus of the hypothalamus (PVH). Our finding suggests a possible secondary role of central GH action in the tachypneic response to hypoxia in conscious mice.


Subject(s)
Hypercapnia , Solitary Nucleus , Animals , Growth Hormone/metabolism , Hypothalamus/metabolism , Hypoxia/metabolism , Mice , Solitary Nucleus/metabolism
15.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742928

ABSTRACT

Leptin resistance is a hallmark of obesity. Treatments aiming to improve leptin sensitivity are considered a promising therapeutical approach against obesity. However, leptin receptor (LepR) signaling also modulates several neurovegetative aspects, such as the cardiovascular system and hepatic gluconeogenesis. Thus, we investigated the long-term consequences of increased leptin sensitivity, considering the potential beneficial and deleterious effects. To generate a mouse model with increased leptin sensitivity, the suppressor of cytokine signaling 3 (SOCS3) was ablated in LepR-expressing cells (LepR∆SOCS3 mice). LepR∆SOCS3 mice displayed reduced food intake, body adiposity and weight gain, as well as improved glucose tolerance and insulin sensitivity, and were protected against aging-induced leptin resistance. Surprisingly, a very high mortality rate was observed in aging LepR∆SOCS3 mice. LepR∆SOCS3 mice showed cardiomyocyte hypertrophy, increased myocardial fibrosis and reduced cardiovascular capacity. LepR∆SOCS3 mice exhibited impaired post-ischemic cardiac functional recovery and middle-aged LepR∆SOCS3 mice showed substantial arhythmic events during the post-ischemic reperfusion period. Finally, LepR∆SOCS3 mice exhibited fasting-induced hypoglycemia and impaired counterregulatory response to glucopenia associated with reduced gluconeogenesis. In conclusion, although increased sensitivity to leptin improved the energy and glucose homeostasis of aging LepR∆SOCS3 mice, major autonomic/neurovegetative dysfunctions compromised the health and longevity of these animals. Consequently, these potentially negative aspects need to be considered in the therapies that increase leptin sensitivity chronically.


Subject(s)
Heart Diseases , Receptors, Leptin , Animals , Energy Metabolism , Glucose/metabolism , Heart Diseases/metabolism , Leptin/metabolism , Mice , Neurons/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
17.
J Neurophysiol ; 127(1): 1-15, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34817281

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.


Subject(s)
Parkinson Disease/physiopathology , Respiration Disorders/physiopathology , Humans , Parkinson Disease/complications , Respiration Disorders/etiology
18.
Exp Physiol ; 107(2): 161-174, 2022 02.
Article in English | MEDLINE | ID: mdl-34907627

ABSTRACT

NEW FINDINGS: What is the central question of this study? The respiratory frequency to hypercapnia is attenuated in an animal model of Parkinson's disease (PD): what is the therapeutic potential of inhibition of anandamide hydrolysis for this respiratory deficit? What is the main finding and its importance? In an animal model of PD there is an increased variability in resting respiratory frequency and an impaired tachypnoeic response to hypercapnia, which is accompanied by diminished expression of Phox2b immunoreactivity in the retrotrapezoid nucleus (RTN). Inhibition of anandamide hydrolysis also impaired the response to hypercapnia and decreased the number of Phox2b immunoreactive cells in the RTN. This strategy does not reverse the respiratory deficits observed in an animal model of PD. ABSTRACT: Parkinson's disease (PD) is characterized by severe classic motor symptoms along with various non-classic symptoms. Among the non-classic symptoms, respiratory dysfunctions are increasingly recognized as contributory factors to complications in PD. The endocannabinoid system has been proposed as a target to treat PD and other neurodegenerative disorders. Since symptom management of PD is mainly focused on the classic motor symptoms, in this work we aimed to test the hypothesis that increasing the actions of the endocannabinoid anandamide by inhibiting its hydrolysis with URB597 reverses the respiratory deficits observed in an animal model of PD. Results show that bilateral injection of 6-hydroxydopamine hydrochloride (6-OHDA) in the dorsal striatum leads to neurodegeneration of the substantia nigra, accompanied by reduced expression of Phox2b in the retrotrapezoid nucleus (RTN), an increase in resting respiratory frequency variability and an impaired tachypnoeic response to hypercapnia. URB597 treatment in control animals was associated with an impaired tachypnoeic response to hypercapnia and a reduced expression of Phox2b in the RTN, whereas treatment of 6-OHDA-lesioned animals with URB597 was not able to reverse the deficits observed. These results suggest that targeting anandamide may not be a suitable strategy to treat PD since this treatment mimics the respiratory deficits observed in the 6-OHDA model of PD.


Subject(s)
Parkinson Disease , Animals , Arachidonic Acids , Disease Models, Animal , Endocannabinoids , Hydrolysis , Oxidopamine , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Polyunsaturated Alkamides
19.
Exp Physiol ; 107(2): 147-160, 2022 02.
Article in English | MEDLINE | ID: mdl-34813109

ABSTRACT

NEW FINDINGS: What is the central question of this study? C1 neurons innervate pontine noradrenergic cell groups, including the A5 region: do A5 noradrenergic neurons contribute to the activation of sympathetic and respiratory responses produced by selective activation of the C1 group of neurons. What is the main finding and its importance? The increase in sympathetic and respiratory activities elicited by selective stimulation of C1 neurons is reduced after blockade of excitatory amino acid within the A5 region, suggesting that the C1-A5 pathway might be important for sympathetic-respiratory control. ABSTRACT: Adrenergic C1 neurons innervate and excite pontine noradrenergic cell groups, including the ventrolateral pontine noradrenergic region (A5). Here, we tested the hypothesis that C1 activates A5 neurons through the release of glutamate and this effect is important for sympathetic and respiratory control. Using selective tools, we restricted the expression of channelrhodopsin2 under the control of the artificial promoter PRSx8 to C1 neurons (69%). Transduced catecholaminergic terminals within the A5 region are in contact with noradrenergic A5 neurons and the C1 terminals within the A5 region are predominantly glutamatergic. In a different group of animals, we performed retrograde lesion of C1 adrenergic neurons projecting to the A5 region with unilateral injection of the immunotoxin anti-dopamine ß-hydroxylase-saporin (anti-DßH-SAP) directly into the A5 region during the hypoxic condition. As expected, hypoxia (8% O2 , 3 h) induced a robust increase in fos expression within the catecholaminergic C1 and A5 regions of the brainstem. Depletion of C1 cells projecting to the A5 regions reduced fos immunoreactivity induced by hypoxia within the C1 region. Physiological experiments showed that bilateral injection of kynurenic acid (100 mM) into the A5 region reduced the rise in mean arterial pressure, and sympathetic and phrenic nerve activities produced by optogenetic stimulation of C1 cells. In conclusion, the C1 neurons activate the ventrolateral pontine noradrenergic neurons (A5 region) possibly via the release of glutamate and might be important for sympathetic and respiratory outputs in anaesthetized rats.


Subject(s)
Adrenergic Neurons , Adrenergic Neurons/metabolism , Animals , Brain Stem/metabolism , Dopamine beta-Hydroxylase/metabolism , Medulla Oblongata/physiology , Rats , Respiration , Saporins/pharmacology
20.
Neuroscience ; 476: 102-115, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34582982

ABSTRACT

The postinspiratory complex (PiCo) is a region located in the ventromedial medulla involved with the post-inspiratory activity. PiCo neurons are excitatory (VGlut2+) and express the enzyme choline acetyl transferase (ChAT+). Evidence also suggests that PiCo is coupled to two additional groups of neurons involved in breathing process, i.e. the pre-Bötzinger complex (preBötC, inspiration) and the retrotrapezoid nucleus (RTN, active expiration), composing all together, the hypothesized triple respiratory oscillator. Here, our main objective is to demonstrate the afferent connections to PiCo region. We mapped projecting-neurons to PiCo by injecting Fluorogold (FG) retrograde tracer into the PiCo of adult Long-Evans Chat-cre male rats. We reported extensive projections from periaqueductal grey matter and Kölliker-Fuse regions and mild projections from the nucleus of the solitary tract, ventrolateral medulla and hypothalamus. We also injected a cre-dependent vector expressing channelrhodopsin 2 (AAV5-ChR2) fused with enhanced mCherry into the PiCo of ChAT-cre rats to optogenetic activate those neurons and investigate the role of PiCo for inspiratory/postinspiratory activity. Both in urethane-anesthetized and unrestrained conscious rats the response of ChR2-transduced neurons to light induced an increase in postinspiratory activity. Our data confirmed that PiCo seems to be dedicated to postinspiratory activity and represent a site of integration for autonomic and motor components of respiratory and non-respiratory pathways.


Subject(s)
Medulla Oblongata , Rhombencephalon , Animals , Cholinergic Neurons , Male , Prosencephalon , Rats , Rats, Long-Evans , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL