Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health B Crit Rev ; 27(1): 1-20, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37889647

ABSTRACT

Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.


Subject(s)
Alkaloids , Venoms , Animals , Acetylcholinesterase , Anura/metabolism , Batrachotoxins/chemistry , Alkaloids/chemistry , Alkaloids/metabolism
2.
Pharmaceuticals (Basel) ; 12(1)2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30836657

ABSTRACT

The present study aimed to evaluate the chemical composition, antioxidant potential, and the cytotoxic and antimicrobial activity of the essential oil of the plant species Tithonia diversifolia (Hemsl) A. Gray. The essential oil obtained was used to identify the chemical compounds present through the techniques of GC-MS and NMR. The antioxidant potential was calculated by the sequestration method of 2,2-diphenyl-1-picrylhydrazyl. For cytotoxic activity, the larval mortality of Artemia salina was evaluated. The main chemical constituents identified are αpinene (9.9%), Limonene (5.40%), (Z)-ß-ocimene (4.02%), p-cymen-8-ol (3.0%), Piperitone (11.72%), (E)-nerolidol (3.78%) and Spathulenol (10.8%). In the evaluation of the antimicrobial activity, bacterial strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were used. The results showed that the bacterium E. coli were more susceptible to the presence of the essential oil, presenting minimal inhibitory concentration at the concentrations that were exposed. The essential oil presented antioxidant activity of 54.6% at the concentration of 5 mg·mL-1 and provided a CI50 of 4.30. It was observed that the essential oil of this species was highly toxic against A. salina lavas, as its cytotoxic activity showed an LC50 of 3.11. Thus, it is concluded that T. diversifolia oils are effective in inhibiting bacterial growth and reducing oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...