Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35565554

ABSTRACT

The goal of our study was to identify the SNPs, metabolic pathways (KEGG), and gene ontology (GO) terms significantly associated with calving and workability traits in dairy cattle. We analysed direct (DCE) and maternal (MCE) calving ease, direct (DSB) and maternal (MSB) stillbirth, milking speed (MSP), and temperament (TEM) based on a Holstein-Friesian dairy cattle population consisting of 35,203 individuals. The number of animals, depending on the trait, ranged from 22,301 bulls for TEM to 30,603 for DCE. We estimated the SNP effects (based on 46,216 polymorphisms from Illumina BovineSNP50 BeadChip Version 2) using a multi-SNP mixed model. The SNP positions were mapped to genes and the GO terms/KEGG pathways of the corresponding genes were assigned. The estimation of the GO term/KEGG pathway effects was based on a mixed model using the SNP effects as dependent variables. The number of significant SNPs comprised 59 for DCE, 25 for DSB and MSP, 17 for MCE and MSB, and 7 for TEM. Significant KEGG pathways were found for MSB (2), TEM (2), and MSP (1) and 11 GO terms were significant for MSP, 10 for DCE, 8 for DSB and TEM, 5 for MCE, and 3 for MSB. From the perspective of a better understanding of the genomic background of the phenotypes, traits with low heritabilities suggest that the focus should be moved from single genes to the metabolic pathways or gene ontologies significant for the phenotype.

2.
Animals (Basel) ; 11(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34679814

ABSTRACT

Longevity is one of the functional traits that considerably affect dairy herd profitability. A Weibull proportional hazards model was used to evaluate the impact of difficult calvings and calf stillbirths on cow functional longevity, defined as length of productive life corrected for milk production. The data for analysis comprised calving ease and calf mortality scores of 2,163,426 calvings, 34.4% of which came from primiparous cows. The percentage of male calves was 53.4%. Calving ease was scored as "without assistance" (34.44%), "with assistance" (62.03%), "difficult-hard pull" (3.39%), and "very difficult, including caesarean section" (0.14%). Calf mortality scores were "live born" (94.21%) and "stillborn or died within 24 h" (5.79%). The Weibull proportional hazards model included classes of calving ease or calf mortality scores × parity (1, ≥2) × sex of calf as time-dependent fixed effect. The model also included time-dependent fixed effects of year × season, parity × stage of lactation, annual change in herd size, fat yield and protein yield, time-independent fixed effect of age at first calving, and time dependent random herd × year × season. In first-parity cows, very difficult birth of a bull or heifer increased the relative risk of culling, respectively, 2.18 or 1.26 times as compared with calving without assistance. In later parities, the relative risk of culling related to very difficult calving was 2.0 times (for male calves) and 1.33 times (for female calves) higher than the relative risk of culling associated with calving without assistance. Calf mortality showed a negative impact on longevity in both heifers and cows. First-parity stillbirth increased the relative risk of culling depending on sex of calf by 18% in females and by 15% in males; in later parities the increase of the relative risk of culling was lower (by 7% for females, 9% for males). Difficult calvings and their consequences, especially in primiparous cows, may negatively influence dairy herd profitability by reducing the length of cows' productive life.

3.
BMC Genet ; 12: 30, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21392379

ABSTRACT

BACKGROUND: Longevity expressed as the number of days between birth and death is a trait of great importance for both human and animal populations. In our analysis we use dairy cattle to demonstrate how the association of Single Nucleotide Polymorphisms (SNPs) located within selected genes with longevity can be modeled. Such an approach can be extended to any genotyped population with time to endpoint information available. Our study is focused on selected genes in order to answer the question whether genes, known to be involved into the physiological determination of milk production, also influence individual's survival. RESULTS: Generally, the highest risk differences among animals with different genotypes are observed for polymorphisms located within the leptin gene. The polymorphism with a highest effect on functional longevity is LEP-R25C, for which the relative risk of culling for cows with genotype CC is 3.14 times higher than for the heterozygous animals. Apart from LEP-R25C, also FF homozygotes at the LEP-Y7F substitution attribute 3.64 times higher risk of culling than the YY homozygotes and VV homozygotes at LEP-A80V have 1.83 times higher risk of culling than AA homozygotes. Differences in risks between genotypes of polymorphisms within the other genes (the butyrophilin subfamily 1 member A1 gene, BTN1A1; the acyl-CoA:diacylglycerol acyltransferase 1 gene, DGAT1; the leptin receptor gene, LEPR; the ATP-binding cassette sub-family G member 2, ABCG2) are much smaller. CONCLUSIONS: Our results indicate association between LEP and longevity and are very well supported by results of other studies related to dairy cattle. In view of the growing importance of functional traits in dairy cattle, LEP polymorphisms should be considered as markers supporting selection decisions. Furthermore, since the relationship between both LEP polymorphism and its protein product with longevity in humans is well documented, with our result we were able to demonstrate that livestock with its detailed records of family structure, genetic, and environmental factors as well as extensive trait recording can be a good model organism for research aspects related to humans.


Subject(s)
Cattle/genetics , Lactation/genetics , Longevity/genetics , Polymorphism, Single Nucleotide , Animals , Female , Genetic Markers
SELECTION OF CITATIONS
SEARCH DETAIL
...