Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Sleep ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121093

ABSTRACT

Alteration of motor control during REM sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 is not associated with alpha-synucleinopathies. To determine whether the chronic absence of ORX neuropeptides is sufficient to induce RBD symptoms, we analyzed during REM sleep the EMG signal of the prepro-hypocretin knockout mice (ORX-/-), a recognized mouse model of NT1. Then, we evaluated the severity of motor alterations by comparing EMG data of ORX-/- mice to those of mice with a targeted suppression of the sublaterodorsal glutamatergic neurotransmission, a recognized rodent model of iRBD. We found a significant alteration of tonic and phasic components of EMG during REM sleep in ORX-/- mice, with more phasic events and more REM sleep episodes without atonia compared to the control wild-type mice. However, these phasic events were fewer, shorter and less complex in ORX-/- mice compared to the RBD-like ORX-/- mice. We thus show that ORX-deficiency, as seen in NT1, is sufficient to impair muscle atonia during REM sleep with a moderate severity of alteration as compared to isolated RBD mice. As described in NT1 patients, we report a major inter-individual variability in the severity and the frequency of RBD symptoms in ORX-deficient mice.

2.
Skin Res Technol ; 30(8): e13890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096178

ABSTRACT

SIGNIFICANCE: Multilesional basal cell carcinoma (BCC) are spread on sun exposed skin areas, including arms, face and back. The first-line treatment remains the surgical resection or Mohs surgery. Despite its high complexity, Mohs surgery is well practiced in USA and Germany and presents very good results both in esthetic and in carcinology point of view. Large lesions more than 2 cm remain challenging to remove by topical cream used in photodynamic therapy (PDT). If these larger lesions are not treated in less than 1 month, they could grow deeply in the skin, thus enhancing the risk of reoccurrence and the severity of the disease. Despite this model herein studied, that is non melanoma skin cancer is a good prognostic cancer, the therapy aims to be applied to more aggressive melanoma skin cancers. AIM: Total regression of large cutaneous lesions less than 1 month with no reoccurrence. APPROACH: Tumor induction on murine model bearing a 500 mm3 subcutaneous lesion. Increasing dose of gold nanoparticles at fixed initial concentration C0 = 0.3 mg/mL, infused into the tumor then exposition of the region of interest to NIR medical laser to assess the therapy. One or two intratumoral administration(s) were compared to surgery and control, that is no treatment, laser alone or nanoparticles alone. RESULTS: Gold nanoparticles alone or the NIR laser alone did not induce the tumor regression. The combination of laser and nanoparticles called plasmonic nanophotothermal therapy induced apoptosis. Derma and hypoderm do not show any visible gold nanoparticles and demonstrated a good cicatrization process. CONCLUSION: Plasmonic nanophotothermal therapy using two doses of gold nanoparticles was the only protocol that proved its efficacy on large lesions in 14 days, that is 500 mm3 on a murine model bearing human basal cell carcinoma.


Subject(s)
Carcinoma, Basal Cell , Gold , Metal Nanoparticles , Photothermal Therapy , Skin Neoplasms , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/therapy , Gold/chemistry , Animals , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Metal Nanoparticles/therapeutic use , Humans , Mice , Photothermal Therapy/methods , Cell Line, Tumor , Photochemotherapy/methods , Female , Combined Modality Therapy/methods
3.
Heliyon ; 10(8): e29297, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644868

ABSTRACT

In radiotherapy, metallic nanoparticles are of high interest in the fight against cancer for their radiosensitizing effects. This study aimed to evaluate the ability of core-shell Fe3O4@Au nanoparticles to potentiate the irradiation effects on redox-, pro-inflammatory markers, and cell death of A549 human pulmonary cancer cells. The hybrid Fe3O4@Au nanoparticles were synthesized using green chemistry principles by the sonochemistry method. Their characterization by transmission electron microscopy demonstrated an average size of 8 nm and a homogeneous distribution of gold. The decreased hydrodynamic size of these hybrid nanoparticles compared to magnetite (Fe3O4) nanoparticles showed that gold coating significantly reduced the aggregation of Fe3O4 particles. The internalization and accumulation of the Fe3O4@Au nanoparticles within the cells were demonstrated by Prussian Blue staining. The reactive oxygen species (ROS) levels measured by the fluorescent probe DCFH-DA were up-regulated, as well as mRNA expression of SOD, catalase, GPx antioxidant enzymes, redox-dependent transcription factor Nrf2, and ROS-producing enzymes (Nox2 and Nox4), quantified by RT-qPCR. Furthermore, irradiation coupled with Fe3O4@Au nanoparticles increased the expression of canonical pro-inflammatory cytokines and chemokines (TNF-α, IL-1ß, IL-6, CXCL8, and CCL5) assessed by RT-qPCR and ELISA. Hybrid nanoparticles did not potentiate the increased DNA damage detected by immunofluorescence following the irradiation. Nevertheless, Fe3O4@Au caused cellular damage, leading to apoptosis through activation of caspase 3/7, secondary necrosis quantified by LDH release, and cell growth arrest evaluated by clonogenic-like assay. This study demonstrated the potential of Fe3O4@Au nanoparticles to potentiate the radiosensitivity of cancerous cells.

4.
Sci Adv ; 10(7): eadi1736, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354248

ABSTRACT

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.


Subject(s)
Carcinogenesis , Cell Transformation, Neoplastic , Humans , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Breast , Genes, ras , Signal Transduction , Cellular Senescence/genetics , Tumor Microenvironment
5.
Front Physiol ; 15: 1342024, 2024.
Article in English | MEDLINE | ID: mdl-38312316

ABSTRACT

Bone health is controlled by the balance between bone formation by osteoblasts and degradation by osteoclasts. A disequilibrium in favor of bone resorption leads to osteolytic diseases characterized by decreased bone density. Osteoclastic resorption is dependent on the assembly of an adhesion structure: the actin ring, also called podosome belt or sealing zone, which is composed of a unique patterning of podosomes stabilized by microtubules. A better understanding of the molecular mechanisms regulating the crosstalk between actin cytoskeleton and microtubules network is key to find new treatments to inhibit bone resorption. Evidence points to the importance of the fine tuning of the activity of the small GTPase RHOA for the formation and maintenance of the actin ring, but the underlying mechanism is not known. We report here that actin ring disorganization upon microtubule depolymerization is mediated by the activation of the RHOA-ROCK signaling pathway. We next show the involvement of GEF-H1, one of RHOA guanine exchange factor highly expressed in osteoclasts, which has the particularity of being negatively regulated by sequestration on microtubules. Using a CRISPR/Cas9-mediated GEF-H1 knock-down osteoclast model, we demonstrate that RHOA activation upon microtubule depolymerization is mediated by GEF-H1 release. Interestingly, although lower levels of GEF-H1 did not impact sealing zone formation in the presence of an intact microtubule network, sealing zone was smaller leading to impaired resorption. Altogether, these results suggest that a fine tuning of GEF-H1 through its association with microtubules, and consequently of RHOA activity, is essential for osteoclast sealing zone stability and resorption function.

6.
Am J Perinatol ; 41(S 01): e3305-e3312, 2024 05.
Article in English | MEDLINE | ID: mdl-38154466

ABSTRACT

OBJECTIVE: Pneumothorax (PTX) is a potentially life-threatening condition that affects neonates, with an incidence of 0.05 to 2%. Its management includes conservative treatment, chest tube (CT) drainage, and needle aspiration (NA). Aims were to evaluate the incidence of PTX in a 10-hospital perinatal network, its clinical characteristics and risk factors, and to compare the different treatment options. STUDY DESIGN: All neonates diagnosed with PTX and hospitalized in the network were included in this retrospective observational trial over a period of 30 months. Primary outcome was the incidence of PTX. Secondary outcomes were the treatment modality, the length of stay (LOS), and the number of chest X-rays. RESULTS: Among the 173 neonates included, the overall incidence of PTX was 0.56 per 100 births with a large range among the hospitals (0.12-1.24). Thirty-nine percent of pneumothoraces were treated conservatively, 41% by CT drainage, 13% by NA, and 7% by combined treatment. Failure rate was higher for NA (37%) than for CT drainage (9%). However, the number of X-rays was lower for patients treated by NA, with a median of 6 (interquartile range [IQR] 4-6.25), than by CT drainage, with a median of 9 (IQR 7-12). LOS was shorter for NA than for CT drainage, with a median of 2 (IQR 1-4.25) and 6 days (IQR 3-15), respectively. Complications, including apnea and urinary retention, occurred in 28% of patients managed with CT drainage, whereas none was observed with NA. CONCLUSION: High variability of PTX incidence was observed among the hospitals within the network, but these values correspond to the literature. NA showed to reduce the number of X-rays, the LOS, and complications compared with CT drainage, but it carries a high failure rate. This study helped provide a new decisional management algorithm to harmonize and improve PTX treatment within our network. KEY POINTS: · Neonatal PTX is a frequent pathology with a high incidence requiring urgent management.. · We report a large variability of PTX incidence between different hospitals of the same network.. · Needle aspiration carries higher failure rate, shorter hospital stay duration without complications reported..


Subject(s)
Chest Tubes , Drainage , Length of Stay , Pneumothorax , Humans , Pneumothorax/therapy , Pneumothorax/epidemiology , Retrospective Studies , Infant, Newborn , Female , Male , Switzerland/epidemiology , Incidence , Drainage/methods , Length of Stay/statistics & numerical data , Conservative Treatment/methods , Risk Factors
7.
Lab Invest ; 103(12): 100258, 2023 12.
Article in English | MEDLINE | ID: mdl-37813278

ABSTRACT

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is a major clinical concern. Specific subtypes, such as claudin-low and metaplastic breast carcinoma (MpBC), have been associated with high nongenetic plasticity, which can facilitate resistance. The similarities and differences between these orthogonal subtypes, identified by molecular and histopathological analyses, respectively, remain insufficiently characterized. Furthermore, adequate methods to identify high-plasticity tumors to better anticipate resistance are lacking. Here, we analyzed 11 triple-negative breast tumors, including 3 claudin-low and 4 MpBC, via high-resolution spatial transcriptomics. We combined pathological annotations and deconvolution approaches to precisely identify tumor spots, on which we performed signature enrichment, differential expression, and copy number analyses. We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia public databases for external validation of expression markers. By focusing our spatial transcriptomic analyses on tumor cells in MpBC samples, we bypassed the negative impact of stromal contamination and identified specific markers that are neither expressed in other breast cancer subtypes nor expressed in stromal cells. Three markers (BMPER, POPDC3, and SH3RF3) were validated in external expression databases encompassing bulk tumor material and stroma-free cell lines. We unveiled that existing bulk expression signatures of high-plasticity breast cancers are relevant in mesenchymal transdifferentiated compartments but can be hindered by abundant stromal cells in tumor samples, negatively impacting their clinical applicability. Spatial transcriptomic analyses constitute powerful tools to identify specific expression markers and could thus enhance diagnosis and clinical care of rare high-plasticity breast cancers.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Gene Expression Profiling , Breast/metabolism , Transcriptome , Claudins/metabolism , Prognosis , Carrier Proteins/metabolism , Muscle Proteins/metabolism , Cell Adhesion Molecules/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
Cancer Res Commun ; 3(5): 830-841, 2023 05.
Article in English | MEDLINE | ID: mdl-37377900

ABSTRACT

Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance: We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.


Subject(s)
Carcinosarcoma , Ovarian Neoplasms , Sarcoma , Humans , Female , Carcinosarcoma/genetics , Ovarian Neoplasms/genetics
9.
ACS Omega ; 8(4): 4092-4105, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743010

ABSTRACT

Skin cancer is a global health issue and mainly composed of melanoma and nonmelanoma cancers. For the first clinical proof of concept on humans, we decided to study good prognosis skin cancers, i.e., carcinoma basal cell. In UE, the first-line treatment remains surgical resection, healing most of the tumors, but presents aesthetic disadvantages with a high reoccurrence rate on exposed areas. Moreover, the therapeutic indications could extend to melanoma and metastasis, which is a different medical strategy that could combine this treatment. Indeed, patients with late-stage melanoma are in a therapeutic impasse, despite recent targeted and immunological therapies. Photothermal therapy using gold nanoparticles is the subject of many investigations due to their strong potential to treat cancers by physical, thermal destruction. We developed gold nanoparticles synthesized by green chemistry (gGNPs), using endemic plant extract from Reunion Island, which have previously showed their efficiency at a preclinical stage. Here, we demonstrate that these gGNPs are less cytotoxic than gold nanoparticles synthesized by Turkevich's method. Furthermore, our work describes the optimization of gGNP coating and stabilization, also taking into consideration the gGNP path in cells (endocytosis, intracellular trafficking, and exocytosis), their specificity toward cancerous cells, their cytotoxicity, and their in vivo efficiency. Finally, based on the metabolic switch of cancerous cells overexpressing Glut transporters in skin cancers, we demonstrated that glucose-stabilized gGNP (gGNP@G) enables a quick internalization, fourfold higher in cancerous cells in contrast to healthy cells with no side cytotoxicity, which is particularly relevant to target and treat cancer.

10.
Commun Biol ; 5(1): 1068, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207615

ABSTRACT

TGF-ß signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-ß exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-ß1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-ß-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-ß gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Smad3 Protein/metabolism , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Humans , Pancreatic Neoplasms/metabolism , RNA , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Pancreatic Neoplasms
11.
Chem Biodivers ; 19(9): e202200217, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35924460

ABSTRACT

In this work, phytochemical components, and the antioxidant properties of an aqueous extract obtained from a medicinal plant Hubertia ambavilla, endemic to Reunion Island, were investigated. A total of 37 compounds were detected and identified by high-performance liquid chromatography (UHPLC) using a photodiode-array detector (DAD) coupled with electrospray ionization/mass spectrometry (ESI/MSn ). From calibration curves, the quantity of secondary metabolites in the aqueous extract was calculated. The mean amounts of phenols, flavonoids, and condensed tannins found were 158.38±1.20 mg GAE/g DE, 60.41±1.65 mg AE/g DE and 23.77±1.36 mg CE/g DE, respectively. The in vitro antioxidant properties of the Hubertia ambavilla plant were measured using three methods: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging and ferric reducing antioxidant power. The results showed that crude aqueous extract of H. ambavilla had effective radical scavenging and reducing power in comparison with standard antioxidant compounds. In conclusion, the crude extract herein presented offers a natural alternative biosource of antioxidants with potential applications in food and health industries.


Subject(s)
Asteraceae , Proanthocyanidins , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Phenols/analysis , Phytochemicals/analysis , Plant Extracts/chemistry , Polyphenols/analysis , Proanthocyanidins/analysis , Spectrometry, Mass, Electrospray Ionization
12.
Eur J Cancer ; 169: 106-122, 2022 07.
Article in English | MEDLINE | ID: mdl-35550950

ABSTRACT

INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS: We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS: We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION: Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , CD27 Ligand/genetics , CD27 Ligand/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Ligands , Lung Neoplasms/pathology , Tumor Microenvironment
13.
Sleep ; 45(7)2022 07 11.
Article in English | MEDLINE | ID: mdl-35429396

ABSTRACT

Narcolepsy type 1 (NT1) is a rare neurology disorder caused by the loss of orexin/hypocretin neurons. NT1 is characterized by excessive daytime sleepiness, sleep and wake fragmentation, and cataplexy. These symptoms have been equally described in both women and men, although influences of gender and hormonal cycles have been poorly studied. Unfortunately, most studies with NT1 preclinical mouse models, use only male mice to limit potential variations due to the hormonal cycle. Therefore, whether gender and/or hormonal cycles impact the expression of narcoleptic symptoms remains to be determined. To address this question, we analyzed vigilance states and cataplexy in 20 female and 17 male adult orexin knock-out narcoleptic mice, with half of the females being recorded over multiple days. Mice had access to chocolate to encourage the occurrence of cataplectic episodes. A vaginal smear was performed daily in female mice to establish the state of the estrous cycle (EC) of the previous recorded night. We found that vigilance states were more fragmented in males than females, and that females had less paradoxical sleep (p = 0.0315) but more cataplexy (p = 0.0375). Interestingly, sleep and wake features were unchanged across the female EC, but the total amount of cataplexy was doubled during estrus compared to other stages of the cycle (p = 0.001), due to a large increase in the number of cataplexy episodes (p = 0.0002). Altogether these data highlight sex differences in the expression of narcolepsy symptoms in orexin knock-out mice. Notably, cataplexy occurrence was greatly influenced by estrous cycle. Whether it is due to hormonal changes would need to be further explored.


Subject(s)
Cataplexy , Narcolepsy , Animals , Cataplexy/diagnosis , Estrous Cycle , Female , Humans , Male , Mice , Mice, Knockout , Narcolepsy/diagnosis , Narcolepsy/genetics , Orexins/genetics , Orexins/metabolism , Sleep/physiology
14.
Brain Pathol ; 32(2): e13027, 2022 03.
Article in English | MEDLINE | ID: mdl-34672414

ABSTRACT

An increased number of histaminergic neurons, identified by labeling histidine-decarboxylase (HDC) its synthesis enzyme, was unexpectedly found in patients with narcolepsy type 1 (NT1). In quest for enlightenment, we evaluate whether an increase in HDC cell number and expression level would be detected in mouse models of the disease, in order to provide proof of concepts reveling possible mechanisms of compensation for the loss of orexin neurons, and/or of induced expression as a consequence of local neuroinflammation, a state that likely accompanies NT1. To further explore the compensatory hypothesis, we also study the noradrenergic wake-promoting system. Immunohistochemistry for HDC, orexin, and melanin-concentrating hormone (MCH) was used to count neurons. Quantitative-PCR of HDC, orexin, MCH, and tyrosine-hydroxylase was performed to evaluate levels of mRNA expression in the hypothalamus or the dorsal pons. Both quantifications were achieved in genetic and neuroinflammatory models of narcolepsy with major orexin impairment, namely the orexin-deficient (Orex-KO) and orexin-hemagglutinin (Orex-HA) mice respectively. The number of HDC neurons and mRNA expression level were unchanged in Orex-KO mice compared to controls. Similarly, we found no change in tyrosine-hydroxylase mRNA expression in the dorsal pons between groups. Further, despite the presence of protracted local neuroinflammation as witnessed by the presence of reactive microglia, we found no change in the number of neurons nor the expression of HDC in Orex-HA mice compared to controls. Importantly, no correlation was found in all conditions between HDC and orexin. Our findings indicate that, in mice, the expression of histamine and noradrenalin, two wake-promoting systems, are not modulated by orexin level whether the lack of orexin is constitutive or induced at adult age, showing thus no compensation. They also show no recruitment of histamine by local neuroinflammation. Further studies will be needed to further define the role of histamine in the pathophysiology of NT1.


Subject(s)
Histamine , Narcolepsy , Animals , Histamine/metabolism , Histidine Decarboxylase/genetics , Humans , Mice , Mixed Function Oxygenases , Narcolepsy/genetics , Narcolepsy/metabolism , Orexins/metabolism , RNA, Messenger
15.
Front Cell Dev Biol ; 9: 778887, 2021.
Article in English | MEDLINE | ID: mdl-34869381

ABSTRACT

Osteoclasts are bone resorbing cells that participate in the maintenance of bone health. Pathological increase in osteoclast activity causes bone loss, eventually resulting in osteoporosis. Actin cytoskeleton of osteoclasts organizes into a belt of podosomes, which sustains the bone resorption apparatus and is maintained by microtubules. Better understanding of the molecular mechanisms regulating osteoclast cytoskeleton is key to understand the mechanisms of bone resorption, in particular to propose new strategies against osteoporosis. We reported recently that ß-tubulin isotype TUBB6 is key for cytoskeleton organization in osteoclasts and for bone resorption. Here, using an osteoclast model CRISPR/Cas9 KO for Tubb6, we show that TUBB6 controls both microtubule and actin dynamics in osteoclasts. Osteoclasts KO for Tubb6 have reduced microtubule growth speed with longer growth life time, higher levels of acetylation, and smaller EB1-caps. On the other hand, lack of TUBB6 increases podosome life time while the belt of podosomes is destabilized. Finally, we performed proteomic analyses of osteoclast microtubule-associated protein enriched fractions. This highlighted ARHGAP10 as a new microtubule-associated protein, which binding to microtubules appears to be negatively regulated by TUBB6. ARHGAP10 is a negative regulator of CDC42 activity, which participates in actin organization in osteoclasts. Our results suggest that TUBB6 plays a key role in the control of microtubule and actin cytoskeleton dynamics in osteoclasts. Moreover, by controlling ARHGAP10 association with microtubules, TUBB6 may participate in the local control of CDC42 activity to ensure efficient bone resorption.

16.
Cancers (Basel) ; 13(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34572787

ABSTRACT

Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.

17.
Front Cell Dev Biol ; 9: 727429, 2021.
Article in English | MEDLINE | ID: mdl-34458275

ABSTRACT

Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair pathway may also be at the origin of the genetic instability arising during the course of cancer progression. The specific gain in expression of POLQ, encoding the error-prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is associated with a characteristic mutational signature. To gain insight into the mechanistic regulation of POLQ expression, this review briefly presents recent findings on the regulation of POLQ in the claudin-low breast tumor subtype, specifically expressing transcription factors involved in epithelial-to-mesenchymal transition (EMT) such as ZEB1 and displaying a paucity in genomic abnormality.

18.
Cancer Res ; 81(6): 1595-1606, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33239429

ABSTRACT

A characteristic of cancer development is the acquisition of genomic instability, which results from the inaccurate repair of DNA damage. Among double-strand break repair mechanisms induced by oncogenic stress, the highly mutagenic theta-mediated end-joining (TMEJ) pathway, which requires DNA polymerase theta (POLθ) encoded by the POLQ gene, has been shown to be overexpressed in several human cancers. However, little is known regarding the regulatory mechanisms of TMEJ and the consequence of its dysregulation. In this study, we combined a bioinformatics approach exploring both Molecular Taxonomy of Breast Cancer International Consortium and The Cancer Genome Atlas databases with CRISPR/Cas9-mediated depletion of the zinc finger E-box binding homeobox 1 (ZEB1) in claudin-low tumor cells or forced expression of ZEB1 in basal-like tumor cells, two triple-negative breast cancer (TNBC) subtypes, to demonstrate that ZEB1 represses POLQ expression. ZEB1, a master epithelial-to-mesenchymal transition-inducing transcription factor, interacted directly with the POLQ promoter. Moreover, downregulation of POLQ by ZEB1 fostered micronuclei formation in TNBC tumor cell lines. Consequently, ZEB1 expression prevented TMEJ activity, with a major impact on genome integrity. In conclusion, we showed that ZEB1 directly inhibits the expression of POLQ and, therefore, TMEJ activity, controlling both stability and integrity of breast cancer cell genomes. SIGNIFICANCE: These findings uncover an original mechanism of TMEJ regulation, highlighting ZEB1 as a key player in genome stability during cancer progression via its repression of POLQ.See related commentary by Carvajal-Maldonado and Wood, p. 1441.


Subject(s)
Breast Neoplasms , Transcription Factors , Breast Neoplasms/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mutagens , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
19.
Am J Cancer Res ; 10(10): 3370-3381, 2020.
Article in English | MEDLINE | ID: mdl-33163276

ABSTRACT

Spatial organization of tumor microenvironment (TME) may influence tumor response to immunomodulatory therapies. Zeb1 is a driver of epithelial-mesenchymal transition, with several roles in immune cell development, however its role in shaping of the immune TME is not fully explored. We conducted a pre-multiplex spatial analysis study to verify whether Zeb1 influences spatial distribution of tumor-infiltrating lymphocytes (TILs) in triple negative breast cancer (TNBC). We applied single and double immunohistochemistry to analyze spatial relationships between CD8+, FoxP3+ and CD20+ tumor-infiltrating lymphocytes (TILs) and the cells expressing Zeb1 in formalin-fixed, paraffin-embedded surgical specimens of 113 TNBCs. 15.5% of cases had Zeb1+ tumor cells and 72.8% of cases had stroma rich in Zeb1+ cells. Low density of intratumoral CD8+ TILs was observed in almost all TNBCs with high or moderate Zeb1+ expression in tumor cells (22/23 cases, 95.6%), and in 90.4% of TNBCs (75/83 cases) with stroma rich in Zeb1+ cells. On the other side, a majority of TNBCs with stroma rich in Zeb1+ cells had high density of stromal CD8+ TILs (55/83 cases, 66.3%). These associations were not observed between Zeb1-expressing cells and FoxP3+ or CD20+ TILs. This in situ analysis showed specific spatial relationship between tumor or stromal Zeb1+ cells and CD8+ TILs, which need to be validated in other cohorts. Zeb1 was highlighted both as a marker of tumor cell EMT and of tumor stroma richness in mesenchymal cells. Several hypotheses about causes of the observed relationship between Zeb1 and TILs are generated and the approaches to verify them discussed. Zeb1 is worth further investigation as a potential biomarker of intratumor immunosuppression of TNBC and of its response to immunotherapies.

20.
J Med Chem ; 63(22): 13680-13694, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33175535

ABSTRACT

Osteoporosis is currently treated with drugs targeting the differentiation or viability osteoclasts, the cells responsible for physiological and pathological bone resorption. Nevertheless, osteoporosis drugs that target only osteoclast activity are expected to preserve bone formation by osteoblasts in contrast to current treatments. We report here the design, synthesis, and biological characterization of a series of novel N-arylsufonamides featuring a diazaspiro[4,4]nonane nucleus to target the guanine nucleotide exchange activity of DOCK5, which is essential for bone resorption by osteoclasts. These compounds can inhibit both mouse and human osteoclast activity. In particular, 4-chlorobenzyl-4-hydroxy-2-phenyl-1-thia-2,7-diazaspiro[4,4]nonane 1,1-dioxide (compound E197) prevented pathological bone loss in mice. Most interestingly, treatment with E197 did not affect osteoclast and osteoblast numbers and hence did not impair bone formation. E197 could represent a lead molecule to develop new antiosteoporotic drugs targeting the mechanism of osteoclast adhesion onto the bone.


Subject(s)
Alkanes/pharmacology , Alkanes/therapeutic use , Bone Resorption/prevention & control , Osteoclasts/drug effects , Osteogenesis/drug effects , Alkanes/chemistry , Animals , Bone Resorption/pathology , Bone Resorption/physiopathology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred C57BL , Osteoclasts/physiology , Osteogenesis/physiology , Ovariectomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL