Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nature ; 629(8013): 851-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38560995

ABSTRACT

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Subject(s)
Birds , Evolution, Molecular , Genome , Phylogeny , Animals , Birds/genetics , Birds/classification , Birds/anatomy & histology , Brain/anatomy & histology , Extinction, Biological , Genome/genetics , Genomics , Population Density , Male , Female
2.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38659899

ABSTRACT

The current "consensus" order in which amino acids were added to the genetic code is based on potentially biased criteria such as absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. Even if inferred perfectly, abiotic abundance might not reflect abundance in the organisms in which the genetic code evolved. Here, we instead exploit the fact that proteins that emerged prior to the genetic code's completion are likely enriched in early amino acids and depleted in late amino acids. We identify the most ancient protein-coding sequences born prior to the archaeal-bacterial split. Amino acid usage in protein sequences whose ancestors date back to a single homolog in the Last Universal Common Ancestor (LUCA) largely matches the consensus order. However, our findings indicate that metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Surprisingly, even more ancient protein sequences - those that had already diversified into multiple distinct copies in LUCA - show a different pattern to single copy LUCA sequences: significantly less depleted in the late amino acids tryptophan and tyrosine, and enriched rather than depleted in phenylalanine. This is compatible with at least some of these sequences predating the current genetic code. Their distinct enrichment patterns thus provide hints about earlier, alternative genetic codes.

3.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38514421

ABSTRACT

MOTIVATION: Genomes are a rich source of information on the pattern and process of evolution across biological scales. How best to make use of that information is an active area of research in phylogenetics. Ideally, phylogenetic methods should not only model substitutions along gene trees, which explain differences between homologous gene sequences, but also the processes that generate the gene trees themselves along a shared species tree. To conduct accurate inferences, one needs to account for uncertainty at both levels, that is, in gene trees estimated from inherently short sequences and in their diverse evolutionary histories along a shared species tree. RESULTS: We present AleRax, a software that can infer reconciled gene trees together with a shared species tree using a simple, yet powerful, probabilistic model of gene duplication, transfer, and loss. A key feature of AleRax is its ability to account for uncertainty in the gene tree and its reconciliation by using an efficient approximation to calculate the joint phylogenetic-reconciliation likelihood and sample reconciled gene trees accordingly. Simulations and analyses of empirical data show that AleRax is one order of magnitude faster than competing gene tree inference tools while attaining the same accuracy. It is consistently more robust than species tree inference methods such as SpeciesRax and ASTRAL-Pro 2 under gene tree uncertainty. Finally, AleRax can process multiple gene families in parallel thereby allowing users to compare competing phylogenetic hypotheses and estimate model parameters, such as duplication, transfer, and loss probabilities for genome-scale datasets with hundreds of taxa. AVAILABILITY AND IMPLEMENTATION: GNU GPL at https://github.com/BenoitMorel/AleRax and data are made available at https://cme.h-its.org/exelixis/material/alerax_data.tar.gz.


Subject(s)
Algorithms , Gene Duplication , Phylogeny , Software , Models, Statistical , Evolution, Molecular
4.
Genome Biol Evol ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37463417

ABSTRACT

ALE and GeneRax are tools for probabilistic gene tree-species tree reconciliation. Based on a common underlying statistical model of how gene trees evolve along species trees, these methods rely on gene vs. species tree discordance to infer gene duplication, transfer, and loss events, map gene family origins, and root species trees. Published analyses have used these methods to root species trees of Archaea, Bacteria, and several eukaryotic groups, as well as to infer ancestral gene repertoires. However, it was recently suggested that reconciliation-based estimates of duplication and transfer events using the ALE/GeneRax model were unreliable, with potential implications for species tree rooting. Here, we assess these criticisms and find that the methods are accurate when applied to simulated data and in generally good agreement with alternative methodological approaches on empirical data. In particular, ALE recovers variation in gene duplication and transfer frequencies across lineages that is consistent with the known biology of studied clades. In plants and opisthokonts, ALE recovers the consensus species tree root; in Bacteria-where there is less certainty about the root position-ALE agrees with alternative approaches on the most likely root region. Overall, ALE and related approaches are promising tools for studying genome evolution.


Subject(s)
Algorithms , Evolution, Molecular , Phylogeny , Gene Duplication , Bacteria/genetics , Eukaryota , Models, Genetic
5.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36576010

ABSTRACT

MOTIVATION: Missing data and incomplete lineage sorting (ILS) are two major obstacles to accurate species tree inference. Gene tree summary methods such as ASTRAL and ASTRID have been developed to account for ILS. However, they can be severely affected by high levels of missing data. RESULTS: We present Asteroid, a novel algorithm that infers an unrooted species tree from a set of unrooted gene trees. We show on both empirical and simulated datasets that Asteroid is substantially more accurate than ASTRAL and ASTRID for very high proportions (>80%) of missing data. Asteroid is several orders of magnitude faster than ASTRAL for datasets that contain thousands of genes. It offers advanced features such as parallelization, support value computation and support for multi-copy and multifurcating gene trees. AVAILABILITY AND IMPLEMENTATION: Asteroid is freely available at https://github.com/BenoitMorel/Asteroid. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genetic Speciation , Genomics , Phylogeny , Computer Simulation , Algorithms , Models, Genetic
6.
Bioinformatics ; 38(15): 3725-3733, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35713506

ABSTRACT

MOTIVATION: Phylogenetic networks can represent non-treelike evolutionary scenarios. Current, actively developed approaches for phylogenetic network inference jointly account for non-treelike evolution and incomplete lineage sorting (ILS). Unfortunately, this induces a very high computational complexity and current tools can only analyze small datasets. RESULTS: We present NetRAX, a tool for maximum likelihood (ML) inference of phylogenetic networks in the absence of ILS. Our tool leverages state-of-the-art methods for efficiently computing the phylogenetic likelihood function on trees, and extends them to phylogenetic networks via the notion of 'displayed trees'. NetRAX can infer ML phylogenetic networks from partitioned multiple sequence alignments and returns the inferred networks in Extended Newick format. On simulated data, our results show a very low relative difference in Bayesian Information Criterion (BIC) score and a near-zero unrooted softwired cluster distance to the true, simulated networks. With NetRAX, a network inference on a partitioned alignment with 8000 sites, 30 taxa and 3 reticulations completes within a few minutes on a standard laptop. AVAILABILITY AND IMPLEMENTATION: Our implementation is available under the GNU General Public License v3.0 at https://github.com/lutteropp/NetRAX. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Phylogeny , Bayes Theorem , Sequence Alignment , Likelihood Functions
7.
JMIR Public Health Surveill ; 8(3): e25532, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35266876

ABSTRACT

BACKGROUND: Cardiorespiratory decompensation (CRD) visits have a profound effect on adult emergency departments (EDs). Respiratory pathogens like respiratory syncytial virus (RSV) and influenza virus are common reasons for increased activity in pediatric EDs and are associated with CRD in the adult population. Given the seasonal aspects of such challenging pathology, it would be advantageous to predict their variations. OBJECTIVE: The goal of this study was to evaluate the increased burden of CRD in adult EDs during flu and bronchiolitis outbreaks in the pediatric population. METHODS: An ecological study was conducted, based on admissions to the adult ED of the Centre Hospitalier Universitaire (CHU) of Grenoble and Saint Etienne from June 29, 2015 to March 22, 2020. The outbreak periods for bronchiolitis and flu in the pediatric population were defined with a decision-making support tool, PREDAFLU, used in the pediatric ED. A Kruskal-Wallis variance analysis and a Spearman monotone dependency were performed in order to study the relationship between the number of adult ED admissions for the International Classification of Diseases (ICD)-10 codes related to cardiorespiratory diagnoses and the presence of an epidemic outbreak as defined with PREDAFLU. RESULTS: The increase in visits to the adult ED for CRD and the bronchiolitis and flu outbreaks had a similar distribution pattern (CHU Saint Etienne: χ23=102.7, P<.001; CHU Grenoble: χ23=126.67, P<.001) and were quite dependent in both hospital settings (CHU Saint Etienne: Spearman ρ=0.64; CHU Grenoble: Spearman ρ=0.71). The increase in ED occupancy for these pathologies was also significantly related to the pediatric respiratory infection outbreaks. These 2 criteria gave an idea of the increased workload in the ED due to CRD during the bronchiolitis and flu outbreaks in the pediatric population. CONCLUSIONS: This study established that CRD visits and bed occupancy for adult EDs were significantly increased during bronchiolitis and pediatric influenza outbreaks. Therefore, a prediction tool for these outbreaks such as PREDAFLU can be used to provide early warnings of increased activity in adult EDs for CRD visits.


Subject(s)
Bronchiolitis , Influenza, Human , Adult , Bronchiolitis/diagnosis , Bronchiolitis/epidemiology , Child , Disease Outbreaks , Emergency Service, Hospital , Humans , Influenza, Human/epidemiology , Retrospective Studies , Time Factors
8.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35021210

ABSTRACT

Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.


Subject(s)
Algorithms , Gene Duplication , Models, Genetic , Pedigree , Phylogeny
9.
Mol Biol Evol ; 38(5): 1777-1791, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33316067

ABSTRACT

Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.


Subject(s)
COVID-19/genetics , Evolution, Molecular , Genome, Viral , Mutation , Phylogeny , SARS-CoV-2/genetics , Humans
10.
Mol Biol Evol ; 38(5): 1744-1760, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33226083

ABSTRACT

Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.


Subject(s)
Anthozoa/genetics , Biological Evolution , Cryptochromes/genetics , Opsins/genetics , Photoreceptor Cells, Invertebrate/metabolism , Animals , Anthozoa/metabolism , Cryptochromes/metabolism , Opsins/metabolism
11.
Bioinformatics ; 36(18): 4822-4824, 2020 09 15.
Article in English | MEDLINE | ID: mdl-33085745

ABSTRACT

MOTIVATION: Gene and species tree reconciliation methods are used to interpret gene trees, root them and correct uncertainties that are due to scarcity of signal in multiple sequence alignments. So far, reconciliation tools have not been integrated in standard phylogenetic software and they either lack performance on certain functions, or usability for biologists. RESULTS: We present Treerecs, a phylogenetic software based on duplication-loss reconciliation. Treerecs is simple to install and to use. It is fast and versatile, has a graphic output, and can be used along with methods for phylogenetic inference on multiple alignments like PLL and Seaview. AVAILABILITY AND IMPLEMENTATION: Treerecs is open-source. Its source code (C++, AGPLv3) and manuals are available from https://project.inria.fr/treerecs/.


Subject(s)
Algorithms , Evolution, Molecular , Phylogeny , Sequence Alignment , Software
12.
Mol Biol Evol ; 37(9): 2763-2774, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32502238

ABSTRACT

Inferring phylogenetic trees for individual homologous gene families is difficult because alignments are often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes. To overcome these challenges, species-tree-aware methods also leverage information from a putative species tree. However, only few methods are available that implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these methods often require expensive data preprocessing (e.g., computing bootstrap trees) and rely on approximations and heuristics that limit the degree of tree space exploration. Here, we present GeneRax, the first maximum likelihood species-tree-aware phylogenetic inference software. It simultaneously accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer, and loss relying on established maximum likelihood optimization algorithms. GeneRax can infer rooted phylogenetic trees for multiple gene families, directly from the per-gene sequence alignments and a rooted, yet undated, species tree. We show that compared with competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in terms of relative Robinson-Foulds distance. On empirical data sets, GeneRax is the fastest among all tested methods when starting from aligned sequences, and it infers trees with the highest likelihood score, based on our model. GeneRax completed tree inferences and reconciliations for 1,099 Cyanobacteria families in 8 min on 512 CPU cores. Thus, its parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax (last accessed June 17, 2020).


Subject(s)
Gene Duplication , Genetic Techniques , Phylogeny , Software , Cyanobacteria/genetics , Gene Deletion , Gene Transfer, Horizontal
13.
Opt Express ; 28(3): 2895-2908, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121968

ABSTRACT

Bessel beams are becoming a very useful tool in many areas of optics and photonics, because of the invariance of their intensity profile over an extended propagation range. Finite-Difference-Time-Domain (FDTD) approach is widely used for the modeling of the beam interaction with nanostructures. However, the generation of the Bessel beam in this approach is a computationally challenging problem. In this work, we report an approach for the generation of the infinite Bessel beams in three-dimensional FDTD. It is based on the injection of the Bessel solutions of Maxwell's equations from a cylindrical hollow annulus. This configuration is compatible with Particle In Cell simulations of laser plasma interactions. This configuration allows using a smaller computation box and is therefore computationally more efficient than the creation of a Bessel-Gauss beam from a wall and models more precisely the analytical infinite Bessel beam. Zeroth and higher-order Bessel beams with different cone angles are successfully produced. We investigate the effects of the injector parameters on the error with respect to the analytical solution. In all cases, the relative deviation is in the range of 0.01-7.0 percent.

14.
Mol Biol Evol ; 37(1): 291-294, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31432070

ABSTRACT

ModelTest-NG is a reimplementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster than jModelTest and ProtTest but equally accurate and introduces several new features, such as ascertainment bias correction, mixture, and free-rate models, or the automatic processing of single partitions. ModelTest-NG is available under a GNU GPL3 license at https://github.com/ddarriba/modeltest , last accessed September 2, 2019.


Subject(s)
Amino Acid Substitution , Evolution, Molecular , Genetic Techniques , Models, Genetic , Software
15.
Bioinformatics ; 35(21): 4453-4455, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31070718

ABSTRACT

MOTIVATION: Phylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture and medicine. Finding the optimal tree under the popular maximum likelihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical datasets. RESULTS: We present RAxML-NG, a from-scratch re-implementation of the established greedy tree search algorithm of RAxML/ExaML. RAxML-NG offers improved accuracy, flexibility, speed, scalability, and usability compared with RAxML/ExaML. On taxon-rich datasets, RAxML-NG typically finds higher-scoring trees than IQTree, an increasingly popular recent tool for ML-based phylogenetic inference (although IQ-Tree shows better stability). Finally, RAxML-NG introduces several new features, such as the detection of terraces in tree space and the recently introduced transfer bootstrap support metric. AVAILABILITY AND IMPLEMENTATION: The code is available under GNU GPL at https://github.com/amkozlov/raxml-ng. RAxML-NG web service (maintained by Vital-IT) is available at https://raxml-ng.vital-it.ch/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Phylogeny , Software , Likelihood Functions
16.
Syst Biol ; 68(2): 365-369, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30165689

ABSTRACT

Next generation sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from diverse microbial environments. Phylogenetic placement methods determine how these sequences fit into an evolutionary context. Previous implementations of phylogenetic placement algorithms, such as the evolutionary placement algorithm (EPA) included in RAxML, or PPLACER, are being increasingly used for this purpose. However, due to the steady progress in NGS technologies, the current implementations face substantial scalability limitations. Herein, we present EPA-NG, a complete reimplementation of the EPA that is substantially faster, offers a distributed memory parallelization, and integrates concepts from both, RAxML-EPA and PPLACER. EPA-NG can be executed on standard shared memory, as well as on distributed memory systems (e.g., computing clusters). To demonstrate the scalability of EPA-NG, we placed $1$ billion metagenetic reads from the Tara Oceans Project onto a reference tree with 3748 taxa in just under $7$ h, using 2048 cores. Our performance assessment shows that EPA-NG outperforms RAxML-EPA and PPLACER by up to a factor of $30$ in sequential execution mode, while attaining comparable parallel efficiency on shared memory systems. We further show that the distributed memory parallelization of EPA-NG scales well up to 2048 cores. EPA-NG is available under the AGPLv3 license: https://github.com/Pbdas/epa-ng.


Subject(s)
Algorithms , Classification/methods , Phylogeny , Sequence Analysis, DNA , Software
17.
Bioinformatics ; 35(10): 1771-1773, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30321303

ABSTRACT

MOTIVATION: Coalescent- and reconciliation-based methods are now widely used to infer species phylogenies from genomic data. They typically use per-gene phylogenies as input, which requires conducting multiple individual tree inferences on a large set of multiple sequence alignments (MSAs). At present, no easy-to-use parallel tool for this task exists. Ad hoc scripts for this purpose do not only induce additional implementation overhead, but can also lead to poor resource utilization and long times-to-solution. We present ParGenes, a tool for simultaneously determining the best-fit model and inferring maximum likelihood (ML) phylogenies on thousands of independent MSAs using supercomputers. RESULTS: ParGenes executes common phylogenetic pipeline steps such as model-testing, ML inference(s), bootstrapping and computation of branch support values via a single parallel program invocation. We evaluated ParGenes by inferring > 20 000 phylogenetic gene trees with bootstrap support values from Ensembl Compara and VectorBase alignments in 28 h on a cluster with 1024 nodes. AVAILABILITY AND IMPLEMENTATION: GNU GPL at https://github.com/BenoitMorel/ParGenes. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.


Subject(s)
Phylogeny , Genomics , Probability , Sequence Alignment
18.
J Child Neurol ; 29(11): 1508-18, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24464514

ABSTRACT

A retrospective analysis was conducted in a French pediatric hospital in Lyon. Subjects were 16 patients diagnosed with acute viral encephalitis with identified causative agents who were admitted to the pediatric intensive care unit from 2008 to 2011. The median length of stay was 6 days. The outcome was favorable for 77% of the patients. Analysis of biological and clinical findings based on causative agents did not reveal clinical patterns or neurological findings specific to the causal viruses. Nevertheless, uncommon clinical pictures and severe neurological complications were highlighted, in particular for children with influenza-related encephalitis and herpes simplex encephalitis. This case series exemplifies the difficulties, even pitfalls, in establishing a diagnosis of encephalitis, especially in neonates. It points out significant differences in the clinical presentation of encephalitis in children compared with clinical pictures described in previously published large-scale studies on encephalitis mainly conducted in adults.


Subject(s)
Encephalitis, Viral/etiology , Encephalitis, Viral/physiopathology , Adolescent , Brain/pathology , Brain/physiopathology , Child , Child, Preschool , Electroencephalography , Encephalitis, Viral/pathology , Encephalitis, Viral/therapy , Follow-Up Studies , France , Hospitalization , Humans , Infant , Infant, Newborn , Intensive Care Units, Pediatric , Magnetic Resonance Imaging , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...