Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Med Genet ; 60(8): 733-739, 2023 08.
Article in English | MEDLINE | ID: mdl-37217257

ABSTRACT

Secondary findings (SFs) identified through genomic sequencing (GS) can offer a wide range of health benefits to patients. Resource and capacity constraints pose a challenge to their clinical management; therefore, clinical workflows are needed to optimise the health benefits of SFs. In this paper, we describe a model we created for the return and referral of all clinically significant SFs, beyond medically actionable results, from GS. As part of a randomised controlled trial evaluating the outcomes and costs of disclosing all clinically significant SFs from GS, we consulted genetics and primary care experts to determine a feasible workflow to manage SFs. Consensus was sought to determine appropriate clinical recommendations for each category of SF and which clinician specialist would provide follow-up care. We developed a communication and referral plan for each category of SFs. This involved referrals to specialised clinics, such as an Adult Genetics clinic, for highly penetrant medically actionable findings. Common and non-urgent SFs, such as pharmacogenomics and carrier status results for non-family planning participants, were directed back to the family physician (FP). SF results and recommendations were communicated directly to participants to respect autonomy and to their FPs to support follow-up of SFs. We describe a model for the return and referral of all clinically significant SFs to facilitate the utility of GS and promote the health benefits of SFs. This may serve as a model for others returning GS results transitioning participants from research to clinical settings.


Subject(s)
Genomics , Referral and Consultation , Adult , Humans , Costs and Cost Analysis , Consensus , Randomized Controlled Trials as Topic
2.
Clin Kidney J ; 16(4): 722-726, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37007699

ABSTRACT

Background: The cause of chronic kidney disease (CKD) remains unknown in ∼20% of patients with kidney failure. Massively parallel sequencing (MPS) can be a valuable diagnostic tool in patients with unexplained CKD, with a diagnostic yield of 12%-56%. Here, we report the use of MPS to establish a genetic diagnosis in a 24-year-old index patient who presented with hypertension, nephrotic-range proteinuria and kidney failure of unknown origin. Additionally, we describe a second family with the same mutation presenting with early-onset CKD. Results: In Family 1, MPS identified a known pathogenic variant in GLA (p.Ile319Thr), and plasma globotriaosylsphingosine and α-galactosidase A activity were compatible with the diagnosis of Fabry disease (FD). Segregation analysis identified three other family members carrying the same pathogenic variant who had mild or absent kidney phenotypes. One family member was offered enzyme therapy. While FD could not be established with certainty as the cause of kidney failure in the index patient, no alternative explanation was found. In Family 2, the index patient had severe glomerulosclerosis and a kidney biopsy compatible with FD at the age of 30 years, along with cardiac involvement and a history of acroparesthesia since childhood, in keeping with a more classical Fabry phenotype. Conclusion: These findings highlight the large phenotypic heterogeneity associated with GLA mutations in FD and underline several important implications of MPS in the work-up of patients with unexplained kidney failure.

3.
Genet Med ; 25(7): 100839, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37057675

ABSTRACT

PURPOSE: LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS: Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS: Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION: We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , LIM-Homeodomain Proteins/genetics , Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/pathology , Transcription Factors/genetics , Intellectual Disability/genetics , Intellectual Disability/complications
5.
Mol Ther Methods Clin Dev ; 28: 262-271, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36816757

ABSTRACT

The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.

6.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876591

ABSTRACT

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

7.
Drugs R D ; 21(4): 385-397, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34542871

ABSTRACT

BACKGROUND AND OBJECTIVE: Fabry disease, an X-linked lysosomal storage disorder characterized by absent or reduced alpha-galactosidase activity, is a lifelong disease that impairs patients' quality of life. Patients with Fabry disease have a considerably shortened lifespan, with mortality being mainly due to renal failure, cardiovascular disease, or cerebrovascular disease. Enzyme replacement therapy with agalsidase alfa has been shown to attenuate the renal, cardiovascular, and neuropathic disease progression associated with Fabry disease. The objective of this study was to investigate the safety of a new animal component-free version of agalsidase alfa. METHODS: A phase III/IV, open-label, single-arm, multicenter safety study was conducted in Canadian patients with Fabry disease between August 2011 and September 2017 as a regulatory requirement to assess the safety of agalsidase alfa produced using an animal component-free bioreactor process. Eligible patients had a documented diagnosis of Fabry disease and satisfied current Canadian guidelines for receiving enzyme replacement therapy for Fabry disease. Following treatment with animal component-free bioreactor-processed agalsidase alfa, treatment-emergent adverse events were monitored, and post hoc analyses of infusion-related reactions by antidrug antibody and neutralizing antibody statuses were conducted. The data were analyzed using descriptive statistics. RESULTS: A total of 167 patients (mean [standard deviation] age, 48.9 [14.8] years), including six pediatric patients (< 18 years of age), received at least one full or partial infusion of agalsidase alfa animal component-free. Fewer than 5% of treatment-emergent adverse events (212/4446) observed in 40 patients were reported as infusion-related reactions. Antidrug antibody and neutralizing antibody status did not affect the proportion of patients with infusion-related reactions. No clinically significant changes in vital signs were observed in patients over the course of the study. CONCLUSIONS: Long-term treatment with bioreactor-produced agalsidase alfa animal component-free did not reveal new safety signals in this population of Canadian patients with Fabry disease. The treatment-emergent adverse event profile was consistent with the clinical manifestations of the disease and the known safety profile of roller bottle-produced agalsidase alfa. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01298141.


Subject(s)
Fabry Disease , alpha-Galactosidase , Animals , Bioreactors , Canada , Child , Enzyme Replacement Therapy , Fabry Disease/drug therapy , Humans , Isoenzymes , Middle Aged , Quality of Life , Recombinant Proteins/therapeutic use , Treatment Outcome , alpha-Galactosidase/adverse effects
8.
Nat Commun ; 12(1): 1178, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633114

ABSTRACT

Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy.


Subject(s)
Fabry Disease/enzymology , Fabry Disease/therapy , Genetic Therapy/methods , Lentivirus/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use , Adult , Antigens, CD34 , Bone Marrow Cells , Fabry Disease/genetics , Genetic Vectors , Hematopoietic Stem Cells , Humans , Leukocytes , Male , Middle Aged , Trihexosylceramides/blood , Trihexosylceramides/urine
9.
Value Health ; 24(2): 268-273, 2021 02.
Article in English | MEDLINE | ID: mdl-33518033

ABSTRACT

OBJECTIVES: Orphan medicinal products (OMPs) often receive market authorization under conditions imposed by regulators for ongoing postauthorization surveillance (PAS) to answer questions that remain at the time of market entry. This surveillance may be provided through industry-funded registries (IFRs). Nevertheless, data in these registries may not be of sufficient quality to answer these questions and may not always be accessible for regulatory review. We propose that a mandatory independent registry is an efficient and cost-effective tool for PAS for OMPs. METHODS: Using data from the Canadian Fabry Disease Initiative, we reviewed costs per unique patient from sites participating in both the independent national registry and IFRs for Fabry disease and compared data completeness from the Canadian Fabry Disease Initiative to that in published documents from IFRs. RESULTS: The costs of data collection through the independent registry were 17% to 36% (depending on site) lower than costs to collect data in the IFRs, and completeness of data collected through the independent registry was higher than that through the IFRs. Data from the independent registry were reviewed annually to guide indications for publicly funded Fabry disease therapy. Even when enrollment ceased to be a requirement to receive therapy, 77% of patients continued to enroll in the registry, suggesting the structure was acceptable to patients. CONCLUSIONS: Independent registries are cost-effective and efficient tools and should be mandated by regulatory agencies as the preferred tool for PAS for OMPs. Countries with publicly funded health systems should consider investment in registry infrastructure for OMPs.


Subject(s)
Data Collection/methods , Orphan Drug Production/statistics & numerical data , Product Surveillance, Postmarketing/methods , Registries , Canada , Cost-Benefit Analysis , Data Collection/economics , Enzyme Replacement Therapy/methods , Fabry Disease/drug therapy , Humans
10.
J Med Genet ; 58(4): 275-283, 2021 04.
Article in English | MEDLINE | ID: mdl-32581083

ABSTRACT

BACKGROUND: Exome and genome sequencing have been demonstrated to increase diagnostic yield in paediatric populations, improving treatment options and providing risk information for relatives. There are limited studies examining the clinical utility of these tests in adults, who currently have limited access to this technology. METHODS: Patients from adult and cancer genetics clinics across Toronto, Ontario, Canada were recruited into a prospective cohort study evaluating the diagnostic utility of exome and genome sequencing in adults. Eligible patients were ≥18 years of age and suspected of having a hereditary disorder but had received previous uninformative genetic test results. In total, we examined the diagnostic utility of exome and genome sequencing in 47 probands and 34 of their relatives who consented to participate and underwent exome or genome sequencing. RESULTS: Overall, 17% (8/47) of probands had a pathogenic or likely pathogenic variant identified in a gene associated with their primary indication for testing. The diagnostic yield for patients with a cancer history was similar to the yield for patients with a non-cancer history (4/18 (22%) vs 4/29 (14%)). An additional 24 probands (51%) had an inconclusive result. Secondary findings were identified in 10 patients (21%); three had medically actionable results. CONCLUSIONS: This study lends evidence to the diagnostic utility of exome or genome sequencing in an undiagnosed adult population. The significant increase in diagnostic yield warrants the use of this technology. The identification and communication of secondary findings may provide added value when using this testing modality as a first-line test.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Undiagnosed Diseases/diagnosis , Whole Genome Sequencing , Adolescent , Adult , Aged , Canada/epidemiology , Exome/genetics , Female , Genetic Testing/trends , Genome, Human/genetics , Humans , Male , Middle Aged , Mutation/genetics , Undiagnosed Diseases/epidemiology , Undiagnosed Diseases/genetics , Young Adult
11.
AJR Am J Roentgenol ; 216(2): 355-361, 2021 02.
Article in English | MEDLINE | ID: mdl-32755161

ABSTRACT

OBJECTIVE. Cardiac involvement is the leading cause of mortality in Fabry disease. Noninvasive markers of cardiac involvement are needed to identify patients at high risk. The purpose of this study was to evaluate the diagnostic potential of segmental native T1 spread as an imaging biomarker in Fabry disease. SUBJECTS AND METHODS. In this prospective study, 43 patients with confirmed Fabry disease (mean ± SD age, 46±14 years; 70% women) and 17 healthy control subjects (mean ± SD age, 44 ±13 years; 53% women) underwent 3-T cardiac MRI including modified Look-Locker inversion recovery T1 mapping. Segmental native T1 spread was calculated as the difference between maximum and minimum segmental native T1 values, expressed as an absolute value and as a relative percentage of global native T1. RESULTS. Absolute and relative segmental native T1 spreads were significantly higher in patients with Fabry disease than in healthy control subjects (absolute median, 115 vs 98 ms [p = 0.004]; relative median, 9.9% vs 8.0% [p < 0.001]) and correlated positively with quantitative late gadolinium enhancement (absolute, r = 0.434, p < 0.001; relative, r = 0.436, p < 0.001), indexed left ventricular mass (absolute, r = 0.316, p = 0.01; relative, r = 0.347, p = 0.007), and global longitudinal strain (absolute, r = 0.289, p = 0.03; relative, r = 0.277, p = 0.03). Relative segmental native T1 spread differentiated patients with Fabry disease from healthy control subjects (odds ratio, 1.44 [95% CI, 1.10-1.89]; p = 0.009). Interob-server agreement was excellent for both absolute (intraclass correlation coefficient, 0.932) and relative (intraclass correlation coefficient, 0.926) segmental native T1 spread. CONCLUSION. Increased native T1 spread is a reproducible imaging biomarker of cardiac involvement in Fabry disease and may be particularly useful in the evaluation of patients who cannot undergo late gadolinium enhancement imaging.


Subject(s)
Fabry Disease/complications , Fabry Disease/diagnostic imaging , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Magnetic Resonance Imaging , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Observer Variation , Odds Ratio , Prospective Studies , Reproducibility of Results
12.
J Thorac Imaging ; 36(4): 242-247, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-32852417

ABSTRACT

PURPOSE: Accurate and reproducible assessment of left ventricular mass (LVM) is important in Fabry disease. However, it is unclear whether papillary muscles should be included in LVM assessed by cardiac magnetic resonance imaging (MRI). The purpose of this study was to evaluate the reproducibility and predictive value of LVM in patients with Fabry disease using different analysis approaches. MATERIALS AND METHODS: A total of 92 patients (44±15 y, 61 women) with confirmed Fabry disease who had undergone cardiac MRI at a single tertiary referral hospital were included in this retrospective study. LVM was assessed at end-diastole using 2 analysis approaches, including and excluding papillary muscles. Adverse cardiac events were assessed as a composite end point, defined as ventricular tachycardia, bradycardia requiring device implantation, severe heart failure, and cardiac death. Statistical analysis included Cox proportional hazard models, Akaike information criterion, intraclass correlation coefficients, and Bland-Altman analysis. RESULTS: Left ventricular end-diastolic volume, end-systolic volume, ejection fraction, and LVM all differed significantly between analysis approaches. LVM was significantly higher when papillary muscles were included versus excluded (157±71 vs. 141±62 g, P<0.001). Mean papillary mass was 16±11 g, accounting for 10%±3% of total LVM. LVM with pap illary muscles excluded had slightly better predictive value for the composite end point compared with LVM with papillary muscles included based on the model goodness-of-fit (Akaike information criterion 140 vs. 142). Interobserver agreement was slightly better for LVM with papillary muscles excluded compared with included (intraclass correlation coefficient 0.993 [95% confidence interval: 0.985, 0.996] vs. 0.989 [95% confidence interval: 0.975, 0.995]) with less bias and narrower limits of agreement. CONCLUSIONS: Inclusion or exclusion of papillary muscles has a significant effect on LVM quantified by cardiac MRI, and therefore, a standardized analysis approach should be used for follow-up. Exclusion of papillary muscles from LVM is a reasonable approach in patients with Fabry disease given slightly better predictive value and reproducibility.


Subject(s)
Fabry Disease , Papillary Muscles , Fabry Disease/diagnostic imaging , Female , Humans , Magnetic Resonance Spectroscopy , Papillary Muscles/diagnostic imaging , Prognosis , Reproducibility of Results , Retrospective Studies
13.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32693025

ABSTRACT

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Subject(s)
Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/genetics , Growth Disorders/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, Inborn/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/genetics , Middle Aged , Phenotype , Young Adult
14.
Circ Genom Precis Med ; 13(2): e002748, 2020 04.
Article in English | MEDLINE | ID: mdl-32150461

ABSTRACT

Background Genetic testing is helpful for diagnosis of hypertrophic cardiomyopathy (HCM) mimics. Little data are available regarding the yield of such testing and its clinical impact. Methods The HCM genetic database at our center was used for identification of patients who underwent HCM-directed genetic testing including at least 1 gene associated with an HCM mimic (GLA, TTR, PRKAG2, LAMP2, PTPN11, RAF1, and DES). Charts were retrospectively reviewed and genetic and clinical data extracted. Results There were 1731 unrelated HCM patients who underwent genetic testing for at least 1 gene related to an HCM mimic. In 1.45% of cases, a pathogenic or likely pathogenic variant in one of these genes was identified. This included a yield of 1% for Fabry disease, 0.3% for familial amyloidosis, 0.15% for PRKAG2-related cardiomyopathy, and 1 patient with Noonan syndrome. In the majority of patients, diagnosis of the HCM mimic based on clinical findings alone would have been challenging. Accurate diagnosis of an HCM mimic led to change in management (eg, enzyme replacement therapy) or family screening in all cases. Conclusions Genetic testing is helpful in the diagnosis of HCM mimics in patients with no or few extracardiac manifestations. Adding these genes to all HCM genetic panels should be considered.


Subject(s)
Biomarkers/analysis , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Genetic Testing/methods , Multifactorial Inheritance , Mutation , Aged , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/genetics , Diagnosis, Differential , Fabry Disease/diagnosis , Fabry Disease/genetics , Female , Follow-Up Studies , Glycogen Storage Disease Type IIb/diagnosis , Glycogen Storage Disease Type IIb/genetics , Humans , Male , Middle Aged , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Prognosis , Retrospective Studies
15.
Radiol Cardiothorac Imaging ; 2(3): e190149, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33778580

ABSTRACT

PURPOSE: To compare transthoracic echocardiography (TTE) and cardiac MRI measurements of left ventricular mass (LVM) and maximum wall thickness (MWT) in patients with Fabry disease and evaluate the clinical significance of discrepancies between modalities. MATERIALS AND METHODS: Seventy-eight patients with Fabry disease (mean age, 46 years ± 14 [standard deviation]; 63% female) who underwent TTE and cardiac MRI within a 6-month interval between 2008 and 2018 were included in this retrospective cohort study. The clinical significance of measurement discrepancies was evaluated with respect to diagnosis of left ventricular hypertrophy (LVH), eligibility for disease-specific therapy, and prognosis. Statistical analysis included paired-sample t test, Cox proportional hazard models, Akaike information criterion (AIC), and intraclass correlation coefficients. RESULTS: LVM indexed to body surface area (LVMI) and MWT were significantly higher at TTE compared with MRI (105 g/m2 ± 48 vs 78 g/m2 ± 36, P < .001 and 14 mm ± 4 vs 13 mm ± 5, P = .008, respectively). LVH classification was discordant between modalities in 23 patients (29%) (P < .001). Eligibility for disease-specific therapy based on MWT was discordant between modalities in 20 patients (26%) (P < .001). LVMI assessed with MRI was a better predictor of the combined endpoint compared with LVMI assessed with TTE (AIC, 127 vs 131). Interobserver agreement for LVMI and MWT was higher for MRI (intraclass correlation coefficient, 0.951 and 0.912, respectively) compared with TTE (intraclass correlation coefficient, 0.940 and 0.871; respectively). CONCLUSION: TTE overestimates LVM and MWT and has lower reproducibility compared with cardiac MRI in Fabry disease. Measurement discrepancies between modalities are clinically significant with respect to diagnosis of LVH, prognosis, and treatment decisions.© RSNA, 2020.

16.
Radiology ; 294(1): 42-49, 2020 01.
Article in English | MEDLINE | ID: mdl-31660802

ABSTRACT

Background Cardiac involvement is the leading cause of mortality in patients with Fabry disease. Identification of imaging findings that predict adverse cardiac events is needed to enable identification of high-risk patients. Purpose To establish the prognostic value of cardiac MRI findings in men and women with Fabry disease. Materials and Methods Consecutive women and men with gene-positive Fabry disease who had undergone cardiac MRI at a single large tertiary referral hospital between March 2008 and January 2019 were included in this retrospective cohort study. Evaluators of cardiac MRI studies were blinded to all clinical information. Adverse cardiac events were assessed as a composite end point, defined as ventricular tachycardia, bradycardia requiring device implantation, severe heart failure, and cardiac death. Statistical analysis included Cox proportional hazard models adjusted for age and Mainz Severity Score Index (a measure of the severity of Fabry disease). Results Ninety patients (mean age, 44 years ± 15 [standard deviation]; 59 women) were evaluated. After a median follow-up period of 3.6 years, the composite end point was reached in 21 patients (incidence rate, 7.6% per year). Left ventricular hypertrophy (LVH) and late gadolinium enhancement (LGE) were independent predictors of the composite end point in adjusted analysis (LVH hazard ratio [HR], 3.0; 95% confidence interval [CI]: 1.1, 8.1; P = .03; and LGE HR, 7.2; 95% CI: 1.5, 34; P = .01). Patients with extensive LGE (≥15% of left ventricular mass) were at highest risk (HR, 12; 95% CI: 2.0, 67; P = .006). Sex did not modify the relationship between the composite end point and any of the cardiac MRI parameters, including LVH (P = .15 for interaction term) and LGE (P = .38 for interaction term). Conclusion Cardiac MRI findings of left ventricular hypertrophy and late gadolinium enhancement can be used to identify patients with Fabry disease who are at high risk of adverse cardiac events. © RSNA, 2019 See also the editorial by Zimmerman in this issue.


Subject(s)
Fabry Disease/complications , Gadolinium/pharmacokinetics , Heart Failure/complications , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/diagnostic imaging , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Adult , Cohort Studies , Contrast Media/pharmacokinetics , Female , Follow-Up Studies , Heart/diagnostic imaging , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
17.
JIMD Rep ; 49(1): 37-42, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31788408

ABSTRACT

Congenital neutropenias due to mutations in ELANE, SBDS or HAX1 or in the setting of glycogen storage disease (GSD) which is caused by SLC37A4 mutation, often require prolonged granulocyte colony stimulating factor (G-CSF) therapy to prevent recurrent infections and hospital admission. There has been emerging evidence that prolonged exposure to G-CSF in cases with congenital neutropenia other than GSD is associated with transformation to myelodysplastic syndrome/acute myeloid leukemia.

18.
BMJ Open ; 9(10): e031092, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31594892

ABSTRACT

INTRODUCTION: Genomic sequencing has rapidly transitioned into clinical practice, improving diagnosis and treatment options for patients with hereditary disorders. However, large-scale implementation of genomic sequencing faces challenges, especially with regard to the return of incidental results, which refer to genetic variants uncovered during testing that are unrelated to the primary disease under investigation, but of potential clinical significance. High-quality evidence evaluating health outcomes and costs of receiving incidental results is critical for the adoption of genomic sequencing into clinical care and to understand the unintended consequences of adoption of genomic sequencing. We aim to evaluate the health outcomes and costs of receiving incidental results for patients undergoing genomic sequencing. METHODS AND ANALYSIS: We will compare health outcomes and costs of receiving, versus not receiving, incidental results for adult patients with cancer undergoing genomic sequencing in a mixed-methods randomised controlled trial. Two hundred and sixty patients who have previously undergone first or second-tier genetic testing for cancer and received uninformative results will be recruited from familial cancer clinics in Toronto, Ontario. Participants in both arms will receive cancer-related results. Participants in the intervention arm have the option to receive incidental results. Our primary outcome is psychological distress at 2 weeks following return of results. Secondary outcomes include behavioural consequences, clinical and personal utility assessed over the 12 months after results are returned and health service use and costs at 12 months and 5 years. A subset of participants and providers will complete qualitative interviews about utility of incidental results. ETHICS AND DISSEMINATION: This study has been approved by Clinical Trials Ontario Streamlined Research Ethics Review System that provides ethical review and oversight for multiple sites participating in the same clinical trial in Ontario.Results from the trial will be shared through stakeholder workshops, national and international conferences, and peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT03597165.


Subject(s)
Incidental Findings , Practice Patterns, Physicians' , Sequence Analysis, DNA , Adult , Costs and Cost Analysis , Evaluation Studies as Topic , Female , Genetic Testing/methods , Genetic Variation , Humans , Male , Outcome Assessment, Health Care/economics , Outcome Assessment, Health Care/methods , Practice Patterns, Physicians'/economics , Practice Patterns, Physicians'/ethics , Practice Patterns, Physicians'/standards , Randomized Controlled Trials as Topic , Sequence Analysis, DNA/ethics , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/statistics & numerical data
19.
J Cardiovasc Magn Reson ; 21(1): 45, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31366357

ABSTRACT

BACKGROUND: Cardiac involvement is common and is the leading cause of mortality in Fabry disease (FD). We explored the association between cardiovascular magnetic resonance (CMR) myocardial strain, T1 mapping, late gadolinium enhancement (LGE) and left ventricular hypertrophy (LVH) in patients with FD. METHODS: In this prospective study, 38 FD patients (45.0 ± 14.5 years, 37% male) and 8 healthy controls (40.1 ± 13.7 years, 63% male) underwent 3 T CMR including cine balanced steady-state free precession (bSSFP), LGE and modified Look-Locker Inversion recovery (MOLLI) T1 mapping. Global longitudinal (GLS) and circumferential (GCS) strain and base-to-apex longitudinal strain (LS) and circumferential strain (CS) gradients were derived from cine bSSFP images using feature tracking analysis. RESULTS: Among FD patients, 8 had LVH (FD LVH+, 21%) and 17 had LGE (FD LGE+, 45%). Nineteen FD patients (50%) had neither LVH nor LGE (FD LVH- LGE-). None of the healthy controls had LVH or LGE. FD patients and healthy controls did not differ significantly with respect to GLS (- 15.3 ± 3.5% vs. - 16.3 ± 1.5%, p = 0.45), GCS (- 19.4 ± 3.0% vs. -19.5 ± 2.9%, p = 0.84) or base-to-apex LS gradient (7.5 ± 3.8% vs. 9.3 ± 3.5%, p = 0.24). FD patients had significantly lower base-to-apex CS gradient (2.1 ± 3.7% vs. 6.5 ± 2.2%, p = 0.002) and native T1 (1170.2 ± 37.5 ms vs. 1239.0 ± 18.0 ms, p < 0.001). Base-to-apex CS gradient differentiated FD LVH- LGE- patients from healthy controls (OR 0.42, 95% CI: 0.20 to 0.86, p = 0.019), even after controlling for native T1 (OR 0.24, 95% CI: 0.06 to 0.99, p = 0.049). In a nested logistic regression model with native T1, model fit was significantly improved by the addition of base-to-apex CS gradient (χ2(df = 1) = 11.04, p < 0.001). Intra- and inter-observer agreement were moderate to good for myocardial strain parameters: GLS (ICC 0.849 and 0.774, respectively), GCS (ICC 0.831 and 0.833, respectively), and base-to-apex CS gradient (ICC 0.737 and 0.613, respectively). CONCLUSIONS: CMR reproducibly identifies myocardial strain abnormalities in FD. Loss of base-to-apex CS gradient may be an early marker of cardiac involvement in FD, with independent and incremental value beyond native T1.


Subject(s)
Cardiomyopathies/diagnosis , Contrast Media/administration & dosage , Fabry Disease/diagnostic imaging , Hypertrophy, Left Ventricular/diagnosis , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Organometallic Compounds/administration & dosage , Ventricular Function, Left , Ventricular Remodeling , Adult , Cardiomyopathies/physiopathology , Case-Control Studies , Fabry Disease/physiopathology , Female , Humans , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Prognosis , Prospective Studies , Reproducibility of Results
20.
Eur J Med Genet ; 62(3): 177-181, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30006056

ABSTRACT

Von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome in which carriers are at an increased risk of developing a variety of tumors in multiple organ systems. A clinical diagnosis of VHL is determined by the presence of specific clinical manifestations while a molecular genetic diagnosis results from a pathogenic variant in the VHL gene. The majority of mutations occur in VHL coding exons and DNA analysis of these regions has a reported sensitivity of nearly 100%. However, rare variants in the VHL gene promoter may be detected in some cases of suspected VHL disease. We report two cases where VHL promoter variants were detected and describe the role of multi-step mRNA and protein analysis in the diagnostic evaluation of these cases.


Subject(s)
Mutation , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics , Adult , Female , Humans , Male , Middle Aged , Pedigree , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , von Hippel-Lindau Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...