Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Cell Biol ; 79: 102132, 2022 12.
Article in English | MEDLINE | ID: mdl-36257241

ABSTRACT

Mechanosensory hair bundles are assembled from actin-based stereocilia that project from the apical surface of hair cells in the inner ear. Stereocilia architecture is critical for the transduction of sound and accelerations, and structural defects in these mechano-sensors are a clinical cause of hearing and balance disorders in humans. Unconventional myosin motors are central to the assembly and shaping of stereocilia architecture. A sub-group of myosin motors with MyTH4-FERM domains (MYO7A, MYO15A) are particularly important in these processes, and hypothesized to act as transporters delivering structural and actin-regulatory cargos, in addition to generating force and tension. In this review, we summarize existing evidence for how MYO7A and MYO15A operate and how their dysfunction leads to stereocilia pathology. We further highlight emerging properties of the MyTH4/FERM myosin family and speculate how these new functions might contribute towards the acquisition and maintenance of mechano-sensitivity.


Subject(s)
Actins , Myosins , Humans
2.
Sci Adv ; 8(29): eabl4733, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857845

ABSTRACT

The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.

SELECTION OF CITATIONS
SEARCH DETAIL
...