Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pract Radiat Oncol ; 13(5): e423-e441, 2023.
Article in English | MEDLINE | ID: mdl-37028645

ABSTRACT

PURPOSE: Radiation Oncology is a complex, resource-intensive discipline. The complexity of the radiation oncology treatment process has increased significantly in recent years with the introduction of more advanced imaging, planning, and treatment delivery technology and enhanced use of multidisciplinary care paths. We conducted a multi-institutional study to estimate the average time by functional unit for a wide range of modern radiation oncology treatment regimens. METHODS AND MATERIALS: Structured process mapping was performed for 24 treatment categories, and average time estimates for 6 functional groups were obtained for each process step through consultation with the full clinical team at each institution. Six geographically dispersed institutions participated in the study. Significant effort was invested in aggregate data analysis and clarification of assumptions. RESULTS: The findings show significant variability in the resources expended for many treatment categories as well as the distribution of workload between functional units. Major factors in the variability include the rate of adoption of hypofractionation in external beam therapy, adoption of automation tools and standardization, and the transition to multimodality image-based planning in brachytherapy. CONCLUSIONS: The data obtained from this study may be useful in designing institution-specific staffing models appropriate to the scope of radiation therapy services provided at each institution.


Subject(s)
Brachytherapy , Radiation Oncology , Humans , Brachytherapy/methods , Medical Oncology
2.
J Appl Clin Med Phys ; 22(3): 261-272, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33599374

ABSTRACT

We have determined the optimal method for modeling kyphoplasty cement to enable accurate dose calculations in the Eclipse treatment planning system (TPS). The cement studied (Medtronic Kyphon HV-R®) consists of 30% Barium, 68% polymethylmethacrylate (PMMA), and 2% benzoyl peroxide, formulated to be radiopaque with kV imaging systems. Neither Barium nor PMMA have a high physical density, resulting in different interaction characteristics for megavoltage treatment beams compared to kV imaging systems. This can lead to significant calculation errors if density mapping is performed using a standard CT number to density curve. To properly characterize the cement for dose calculation, we 3D printed a hemi-cylindrical container to fit adjacent to a micro-chamber insert for an anthropomorphic phantom, and filled the container with Kyphon cement. We CT scanned the combination, modeled the cement with multiple material assignments in the TPS, designed plans with different field sizes and beam geometry for five photon modes, and measured the doses for all plans. All photon energies show significant error in calculated dose when the cement is modeled based on the CT number. Of the material assignments we evaluated, polytetrafluoroethylene (PTFE) showed the best overall agreement with measurement. Calculated and measured doses agree within 3.5% for a 340-degree arc technique (which averages transmission and scatter effects) with the Acuros XB algorithm and PTFE as the assigned material. To confirm that PTFE is a reasonable substitute for kyphoplasty cement, we performed measurements in a slab phantom using rectangular inserts of cement and PTFE, showing average agreement of all photon modes within 2%. Based on these findings, we conclude that the PTFE material assignment provides acceptable dose calculation accuracy for the AAA and Acuros XB photon algorithms in the Eclipse TPS. We recommend that the cement be delineated as a structure and assigned the PTFE material for accurate dose calculation.


Subject(s)
Kyphoplasty , Algorithms , Humans , Phantoms, Imaging , Photons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...