Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 47(4): 1319-23, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18179167

ABSTRACT

Reduction of [P 2N 2]ZrCl 2 (where P 2N 2 = PhP(CH 2SiMe 2NSiMe 2CH 2) 2PPh) by KC 8 under N 2 generates the dinuclear dinitrogen complex ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) and impurities in varying yields depending on the solvent and temperature. The toluene complex [P 2N 2]Zr(eta (6)-C 7H 8) along with a dinuclear species with bridging PC 6H 5 groups is observable. Also observable in the crude reaction mixtures is the mu-oxodiazenido derivative, ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2H 2)(mu-O), due to reaction with trace H 2O. This paper reports the full details of the preparation of ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) including an improved method that involves reduction at low temperatures in a tetrahydrofuran solvent. Also reported is a reproducible synthesis of the oxodiazenido complex along with the X-ray structures of the dinitrogen complex and the oxodiazenido derivative.

2.
J Am Chem Soc ; 127(37): 12796-7, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16159262

ABSTRACT

The reduction of high oxidation state metal complexes in the presence of molecular nitrogen is one of the most common methods to synthesize a dinitrogen complex. However, the presence of strong reducing agents combined with the poor binding ability of N2 can lead to unanticipated outcomes. For example, the reduction of [NPN]ZrCl2(THF) (where NPN = PhP(CH2SiMe2NPh)2) with KC8 under N2 leads to the formation of the side-on bridged dinuclear dinitrogen complex ([NPN]Zr(THF))2(mu-eta2:eta2-N2) with an N-N bond distance of 1.503(3) A; however, reduction of the corresponding titanium precursor, [NPN]TiCl2, under N2 does not generate a dinitrogen complex, rather the bis(phosphinimide) derivative, ([N(PN)N]Ti)2, is isolated in which the added N2 is incorporated between the titanium and phosphine centers. Performing the reaction under 15N2 results in the 15N label being incorporated in the phosphinimide unit. A suggested mechanism for this process involves an initially formed dinitrogen complex being over reduced to generate a species with bridging nitrides that undergoes nucleophilic attack by the coordinated phosphine ligands and formation of the P=N bond of the phosphinimide.


Subject(s)
Nitrogen/chemistry , Organometallic Compounds/chemical synthesis , Phosphines/chemistry , Phosphorus/chemistry , Titanium/chemistry , Crystallography, X-Ray , Ligands , Lithium/chemistry , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Oxidation-Reduction , Silicon/chemistry , Stereoisomerism , Zirconium/chemistry
3.
J Am Chem Soc ; 126(31): 9480-1, 2004 Aug 11.
Article in English | MEDLINE | ID: mdl-15291518

ABSTRACT

The dinuclear dinitrogen complex ([P2N2]Zr)2(mu-eta2:eta2-N2) reacts with terminal aryl alkynes to generate a new species in which the dinitrogen unit has been functionalized. The products formed have the general formula ([P2N2]Zr)2(mu-eta2:eta2-N2CCAr)(mu-CCAr) and display a styryl-hydrazido unit bridging the two Zr centers along with a bridging arylalkynide. The crystal structures of three of these products are reported. A mechanism is proposed for this process that involves cycloaddition of the alkyne to the side-on dinitrogen unit followed by protonation of the Zr-C bond by a second equivalent of terminal alkyne. A fluxional process is operative in solution that equilibrates the phosphorus nuclei at high temperature; in the slow exchange limit, the two [P2N2]Zr ends of complex are inequivalent as evidenced by four resonances in the 31P NMR spectrum for the inequivalent phosphorus donors. This C-N bond-forming reaction is unique in that an activated dinitrogen fragment undergoes a reaction with an alkyne.

4.
Chemistry ; 9(2): 520-30, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12532302

ABSTRACT

The vibrational and electronic structure of the side-on N(2)-bridged Zr complex [((P(2)N(2))Zr)(2)(mu-eta(2):eta(2)-N(2))] (P(2)N(2)=PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh) were analyzed. The vibrational characterization of the planar Zr(2)N(2) core was based on resonance Raman and infrared spectroscopy. In the Raman spectrum, the Nbond;N stretching band is found at 775 cm(-1) with an isotope shift of 22 cm(-1). Due to its appearance in many overtones and combination modes, the metal-metal stretch is assigned to the peak at 295 cm(-1). The two ungerade modes of the Zr(2)N(2) core were identified in the infrared spectrum. Based on these four vibrations of the Zr(2)N(2) unit, a quantum chemical assisted normal coordinate analysis (QCA-NCA) was performed. The force constants for the N--N and Zr--N bonds were calculated to be 1.53 and 2.58 mdyn A(-1), respectively. The butterfly distortion of the Zr(2)N(2) unit obtained in DFT geometry optimizations of planar side-on N(2)-bridged Zr complexes was analyzed in more detail. It was found that on bending of the Zr(2)N(2) core, the lone pairs of the axial amide ligands are rotated by 90 degrees. The bent Zr(2)N(2) unit is 11 kcal mol(-1) lower in energy than the planar core due to a more uniform distribution of electron density between the metal atoms and N(2) and delocalization of electron density from the amide ligands to the Zr(2)N(2) unit. The spectroscopic implications of this distortion are analyzed.

5.
J Am Chem Soc ; 124(4): 516-7, 2002 Jan 30.
Article in English | MEDLINE | ID: mdl-11804471

ABSTRACT

Reduction of [P2N2]ZrCl2 (where [P2N2] = PhP(CH2SiMe2NSiMe2CH2)2PPh) with KC8 under argon generates the phosphorus phenyl bridged bimetallic complex where the bridging phenyl groups are formally reduced to bis(allyl) dianions. Similar reduction of [P2N2]NbCl caused the one-electron reduction of the phosphorus phenyl group to generate a cyclohexadienyl moiety via a C-C bond formation between the ipso carbons of the two phenyl groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...