Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 12(2): 186-192, 2020 02.
Article in English | MEDLINE | ID: mdl-31792386

ABSTRACT

Competitive water adsorption can have a significant impact on metal-organic framework performance properties, ranging from occupying active sites in catalytic reactions to co-adsorbing at the most favourable adsorption sites in gas separation and storage applications. In this study, we investigate, for a metal-organic framework that is stable after moisture exposure, what are the reversible, loading-dependent structural changes that occur during water adsorption. Herein, a combination of in situ synchrotron powder and single-crystal diffraction, infrared spectroscopy and molecular modelling analysis was used to understand the important role of loading-dependent water effects in a water stable metal-organic framework. Through this analysis, insights into changes in crystallographic lattice parameters, water siting information and water-induced defect structure as a response to water loading were obtained. This work shows that, even in stable metal-organic frameworks that maintain their porosity and crystallinity after moisture exposure, important molecular-level structural changes can still occur during water adsorption due to guest-host interactions such as water-induced bond rearrangements.

2.
Phys Chem Chem Phys ; 15(45): 19665-72, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24132126

ABSTRACT

The role of MO4 (M = W, Mo) orientational disorder in the thermal expansion and compressibility of ZrW2O8 and ZrMo2O8 was investigated via in situ powder X-ray diffraction at elevated temperature and pressure. A dramatic reduction in the bulk modulus of α-ZrW2O8, which has ordered WO4 tetrahedra at room temperature, from 65 GPa at room temperature to 47 GPa at 386 K was observed to be concomitant with the onset of a reversible WO4 orientational disordering upon compression. Additionally, the coefficient of thermal expansion (CTE) of the α phase became more negative upon compression within the temperature range in which pressure-dependent disorder was observed; αl, over the range 298 to 386 K, was ~-11 ppm K(-1) at 35 MPa but ~-16 ppm K(-1) at 276 MPa. No softening upon heating or change in CTE upon compression was observed for ZrW2O8 above the order → disorder phase transition temperature. Cubic ZrMo2O8 has a disordered arrangement of MoO4 tetrahedra at all temperatures and pressures accessed in this study. Its bulk modulus was independent of temperature, and its CTE was insensitive to pressure, much like ß-ZrW2O8. The stability/metastability of the cubic and orthorhombic phases upon heating above room temperature and compression is discussed, with a focus on changes in the thermodynamics and kinetics of the cubic ↔ orthorhombic transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...