Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 77(3): 422-32, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19027720

ABSTRACT

The characterization of the potent p38 inhibitor BIRB796 as a dual inhibitor of p38/Jun N-terminal kinases (JNK) mitogen-activated protein kinases (EC 2.7.11.24) has complicated the interpretation of its reported anti-inflammatory activity. To better understand the contribution of JNK2 inhibition to the anti-inflammatory activities of BIRB796, we explored the relationship between the effects of BIRB796 and analogues on cytokine production and on cellular p38 and JNK signaling. We determined the binding affinity for BIRB796 and structural analogues to p38alpha and JNK2 and characterized compound 2 as a p38 inhibitor that binds to p38alpha with an affinity equivalent to BIRB796 but does not bind to any of the JNK isoforms. High-content imaging enabled us to show that the inhibition of p38 signaling by BIRB796 and analogues correlates with the ability of these compounds to inhibit the lipopolysaccharide (LPS)-induced TNF-alpha production in THP-1 monocytes. This finding was extended to cytokine release by disease-relevant human primary cells: to the production of TNF-alpha by peripheral blood mononuclear cells, and of IL-8 by neutrophils. Furthermore, BIRB796 and compound 2 inhibited the production of TNF-alpha in THP-1 monocytes and the IL-12/IL-18-induced production of interferon-gamma in human T-cells with similar potencies. In contrast, cellular JNK signaling in response to cytokines or stress stimuli was only weakly inhibited by BIRB796 and analogues and not affected by compound 2. In summary, our data suggest that p38 inhibition alone is sufficient to completely suppress cytokine production and that the added inhibition of JNK2 does not significantly contribute to the effects of BIRB796 on cytokine production.


Subject(s)
Cytokines/biosynthesis , Inflammation Mediators/metabolism , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , HeLa Cells , Humans
2.
Biochem Pharmacol ; 74(1): 98-106, 2007 Jun 30.
Article in English | MEDLINE | ID: mdl-17482579

ABSTRACT

Molecular K(d) and k(off) parameters are often used to define the molecular potency of drugs. These constants, however, are determined on purified target proteins, and their relationship to in vivo binding phenomena is poorly understood. Herein, we report two novel assays to determine the off-rates of allosteric antagonists from lymphocyte function-associated antigen 1 (LFA-1). The SPR assay involves using the non-blocking mAb TS2/4 to immobilize full-length LFA-1 on a hydrophilic chip surface, and the soluble, native ligand sICAM-1 to probe the fraction of free LFA-1. To determine the fraction of free LFA-1 on cell surfaces, a flow cytometry assay was developed utilizing the fluorophore-labeled Fab R3.1. The R3.1 antibody has been previously demonstrated to block the ability of both ICAM-1 and antagonists to bind to purified and cell-surface LFA-1. The molecular and ex vivo cellular parameters were determined for a set of nine structurally-related LFA-1 allosteric antagonists. The relationships between the parameters determined in the ELISA (K(d)), SPR (k(off)), and flow cytometry (k(off)) assays were shown to be linear with slopes approximately equal to 1, and a correlation analysis showed that the three assay datasets were equivalent at the alpha=0.05 level. These results were unexpected, as the ELISA and SPR assays involve high affinity LFA-1, and the flow cytometry assays involve cell surface LFA-1 in whole-blood, in which a distribution of affinity states would be expected. Nevertheless, the results presented herein show that the K(d) and k(off)'s determined in molecular assays can be used as predictors of LFA-1 receptor occupancy in ex vivo assays.


Subject(s)
Cell Adhesion Molecules/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Imidazolidines/metabolism , Integrins/antagonists & inhibitors , Lymphocyte Function-Associated Antigen-1/metabolism , Surface Plasmon Resonance/methods , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Allosteric Site/drug effects , Allosteric Site/physiology , Antibodies, Monoclonal/metabolism , Cell Adhesion Molecules/chemistry , Flow Cytometry , Hydantoins/chemistry , Hydantoins/metabolism , Hydantoins/pharmacology , Imidazolidines/chemistry , Imidazolidines/pharmacology , Integrins/immunology , Intercellular Adhesion Molecule-1/pharmacology , Kinetics , Lymphocyte Function-Associated Antigen-1/chemistry , Reproducibility of Results
3.
J Biomol Screen ; 12(1): 70-83, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17166826

ABSTRACT

Numerous assay methods have been developed to identify small-molecule effectors of protein kinases, but no single method can be applied to all isolated kinases. The authors developed a set of 3 high-throughput screening (HTS)-compatible biochemical assays that can measure 3 mechanistically distinct properties of a kinase active site, with the goal that at least 1 of the 3 would be applicable to any kinase selected as a target for drug discovery efforts. Two assays measure catalytically active enzyme: A dissociation-enhanced lanthanide fluoroimmuno assay (DELFIA) uses an antibody to quantitate the generation of phosphorylated substrate; a second assay uses luciferase to measure the consumption of adenosine triphosphate (ATP) during either phosphoryl-transfer to a peptide substrate or to water (intrinsic ATPase activity). A third assay, which is not dependent on a catalytically active enzyme, measures the competition for binding to kinase between an inhibitor and a fluorescent ATP binding site probe. To evaluate the suitability of these assays for drug discovery, the authors compared their ability to identify inhibitors of a nonreceptor protein tyrosine kinase from the Tec family, interleukin-2-inducible T cell kinase (ITK). The 3 assays agreed on 57% of the combined confirmed hit set identified from screening a 10,208-compound library enriched with known kinase inhibitors and molecules that were structurally similar. Among the 3 assays, the one measuring intrinsic ATPase activity produced the largest number of unique hits, the fewest unique misses, and the most comprehensive hit set, missing only 2.7% of the confirmed inhibitors identified by the other 2 assays combined. Based on these data, all 3 assay formats are viable for screening and together provide greater options for assay design depending on the targeted kinase.


Subject(s)
Adenosine Triphosphatases/metabolism , Biological Assay/methods , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Binding Sites/drug effects , Fluorescent Dyes/chemistry , Humans , Kinetics
4.
Assay Drug Dev Technol ; 3(5): 483-99, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16305306

ABSTRACT

This report describes statistical validation methods implemented on assay data for inhibition of subcellular redistribution of nuclear factor kappaB (NF kappaB) in HeLa cells. We quantified cellular inhibition of cytoplasmic-nuclear translocation of NF kappaB in response to a range of concentrations of interleukin-1 (IL-1) receptor antagonist in the presence of IL-1alpha using eight replicate rows in each four 96-well plates scanned five times on each of 2 days. Translocation was measured as the fractional localized intensity of the nucleus (FLIN), an implementation of our more general fractional localized intensity of the compartments (FLIC), which analyzes whole compartments in the context of the entire cell. The NF kappaB antagonist assay (inhibition of IL-1- induced NF kappaB translocation) data were collected on a Q3DM (San Diego, CA) EIDAQtrade mark 100 high throughput microscopy system. [In 2003, Q3DM was purchased by Beckman Coulter Inc. (Fullerton, CA), which released the IC 100 successor to the EIDAQ 100.] The generalized FLIC method is described along with two-point (minimum-maximum) and multiple point titration statistical methods. As a ratio of compartment intensities that tend to change proportionally, FLIN was resistant to photobleaching errors. Two-point minimum-maximum statistical analyses yielded the following: a Z' of 0.174 with the data as n = 320 independent well samples; Z' by row data in a range of 0.393-0.933, with a mean of 0.766; by-plate Z' data of 0.310, 0.443, 0.545, and 0.794; and by-plate means of columns Z' data of 0.879, 0.927, 0.945, and 0.963. The mean 50% inhibitory concentration (IC50) for IL-1 receptor antagonist over all experiments was 213 ng/ml. The combined IC50 coefficients of variation (CVs) were 0.74%, 0.85%, 2.09%, and 2.52% for the four plates. Repeatability IC50 CVs were as follows: day to day 3.0%, row to row 8.0%, plate to plate 2.8%, and day to day 0.6%. The number of cells required for statistically resolvable differences in dose concentrations, plotted in a family of FLIN sigma/deltamicro (SD/range) curves and tabulated, demonstrated cell-by-cell assay precision with our combined sigma/deltamicro = 0.32 that required approximately 10-fold fewer cells than in a previously reported NF kappaB assay with sigma/deltamicro = 1.52. To better understand the relationship between cell-by-cell measurements and IC50 precision, 500 Monte Carlo simulations with varying cell-measurement SDs were used to explore three-, five-, seven-, and 11-point model titrations. The reductions in deltaIC50 90% confidence intervals from 11- to three-point titrations were 10-fold with the previously reported sigma/deltamicro = 1.52 and twofold with our sigma/deltamicro = 0.32. With these normalized parameters, this report provides a common statistical foundation, independent of the assay details, for evaluating the performance of imaging data on any instrument.


Subject(s)
Active Transport, Cell Nucleus/physiology , Biological Assay/methods , Cell Nucleus/metabolism , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , NF-kappa B/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Sialoglycoproteins/administration & dosage , Active Transport, Cell Nucleus/drug effects , Algorithms , Cell Count/methods , Cell Nucleus/ultrastructure , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , HeLa Cells , Humans , Interleukin 1 Receptor Antagonist Protein , Protein Transport/drug effects , Protein Transport/physiology , Reproducibility of Results , Sensitivity and Specificity , Software , Software Validation
5.
Bioorg Med Chem ; 11(5): 733-40, 2003 Mar 06.
Article in English | MEDLINE | ID: mdl-12538003

ABSTRACT

The design and synthesis of dipeptidyl disulfides and dipeptidyl benzoylhydrazones as selective inhibitors of the cysteine protease Cathepsin S are described. These inhibitors were expected to form a slowly reversible covalent adduct of the active site cysteine of Cathepsin S. Formation of the initial adduct was confirmed by mass spectral analysis. The nature and mechanism of these adducts was explored. Kinetic analysis of the benzoyl hydrazones indicate that these inhibitors are acting as irreversible inhibitors of Cathepsin S. Additionally, the benzoylhydrazones were shown to be potent inhibitors of Cathepsin S processing of Class II associated invariant peptide both in vitro and in vivo.


Subject(s)
Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Disulfides/chemical synthesis , Disulfides/pharmacology , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Animals , Cathepsin B/antagonists & inhibitors , Cell Line , Drug Design , Humans , Kinetics , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pancreatic Elastase/antagonists & inhibitors , Precipitin Tests , Recombinant Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...