Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1356: 1-9, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24993054

ABSTRACT

Two dispersive liquid-liquid microextraction (DLLME) approaches including temperature-controlled ionic liquid dispersive liquid-liquid microextraction (TCIL-DLLME) and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) were compared for the extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, lufenuron and flufenoxuron) from wastewater samples prior to their determination by high-performance liquid chromatography with a hybrid triple quadrupole-linear ion trap-mass spectrometer (LC-QqLIT-MS/MS). Influential parameters affecting extraction efficiency were systematically studied and optimized and the most significant green parameters were quantified and compared. The best results were obtained using the US-IL-DLLME procedure, which employed the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) and methanol (MeOH) as extraction and disperser solvent, respectively. US-IL-DLLME procedure was fast, easy, low environmental toxicity and, it was also able to successfully extract all selected benzoylureas. This method was extensively validated with satisfactory results: limits of detection and quantification were in the range 0.5-1.0 ng L(-1) and 1.5-3.5 ng L(-1), respectively, whereas recovery rates ranged from 89 to 103% and the relative standard deviations were lower than 13.4%. The applicability of the method was assessed with the analysis of effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of teflubenzuron at mean concentration levels of 11.3 ng L(-1). US-IL-DLLME sample treatment in combination with LC-QqLIT-MS/MS has demonstrated to be a sensitive, selective and efficient method to determine benzoylurea insecticides in wastewaters at ultra-trace levels.


Subject(s)
Green Chemistry Technology/standards , Imidazoles/chemistry , Insecticides/isolation & purification , Ionic Liquids/chemistry , Tandem Mass Spectrometry/standards , Wastewater/analysis , Benzamides/analysis , Benzamides/isolation & purification , Chromatography, High Pressure Liquid/standards , Diflubenzuron/analysis , Diflubenzuron/isolation & purification , Insecticides/analysis , Liquid Phase Microextraction/standards , Methanol/chemistry , Phenylurea Compounds/analysis , Phenylurea Compounds/isolation & purification , Reference Standards , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...