Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 12: 645530, 2021.
Article in English | MEDLINE | ID: mdl-33828542

ABSTRACT

Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.

2.
Phytopathology ; 110(1): 29-48, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31544593

ABSTRACT

The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.


Subject(s)
Coinfection , Plant Diseases , Plant Viruses , Animals , Insecta/virology , Plant Diseases/virology
3.
Phytopathology ; 110(1): 174-186, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31502517

ABSTRACT

Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.


Subject(s)
Aphids , Behavior, Animal , Coinfection , Cucurbitaceae , Insect Vectors , Animals , Aphids/physiology , Aphids/virology , Cucurbitaceae/virology , Insect Vectors/physiology , Insect Vectors/virology , Plant Diseases/virology
4.
Nucleic Acids Res ; 43(5): 2902-13, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25694514

ABSTRACT

Cytoplasmic degradation of endogenous RNAs is an integral part of RNA quality control (RQC) and often relies on the removal of the 5' cap structure and their subsequent 5' to 3' degradation in cytoplasmic processing (P-)bodies. In parallel, many eukaryotes degrade exogenous and selected endogenous RNAs through post-transcriptional gene silencing (PTGS). In plants, PTGS depends on small interfering (si)RNAs produced after the conversion of single-stranded RNAs to double-stranded RNAs by the cellular RNA-dependent RNA polymerase 6 (RDR6) in cytoplasmic siRNA-bodies. PTGS and RQC compete for transgene-derived RNAs, but it is unknown whether this competition also occurs for endogenous transcripts. We show that the lethality of decapping mutants is suppressed by impairing RDR6 activity. We establish that upon decapping impairment hundreds of endogenous mRNAs give rise to a new class of rqc-siRNAs, that over-accumulate when RQC processes are impaired, a subset of which depending on RDR6 for their production. We observe that P- and siRNA-bodies often are dynamically juxtaposed, potentially allowing for cross-talk of the two machineries. Our results suggest that the decapping of endogenous RNA limits their entry into the PTGS pathway. We anticipate that the rqc-siRNAs identified in decapping mutants represent a subset of a larger ensemble of endogenous siRNAs.


Subject(s)
Arabidopsis Proteins/genetics , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Expression Regulation, Plant , Mutation , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified , RNA Caps/metabolism , RNA Interference , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA-Dependent RNA Polymerase/metabolism , Transcriptome
5.
BMC Genomics ; 15: 1083, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25491154

ABSTRACT

BACKGROUND: Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), have emerged as important regulators of eukaryotic gene expression. In plants, miRNAs play critical roles in development, nutrient homeostasis and abiotic stress responses. Accumulating evidence also reveals that sRNAs are involved in plant immunity. Most studies on pathogen-regulated sRNAs have been conducted in Arabidopsis plants infected with the bacterial pathogen Pseudomonas syringae, or treated with the flagelin-derived elicitor peptide flg22 from P. syringae. This work investigates sRNAs that are regulated by elicitors from the fungus Fusarium oxysporum in Arabidopsis. RESULTS: Microarray analysis revealed alterations on the accumulation of a set of sRNAs in response to elicitor treatment, including miRNAs and small RNA sequences derived from massively parallel signature sequencing. Among the elicitor-regulated miRNAs was miR168 which regulates ARGONAUTE1, the core component of the RNA-induced silencing complex involved in miRNA functioning. Promoter analysis in transgenic Arabidopsis plants revealed transcriptional activation of MIR168 by fungal elicitors. Furthermore, transgenic plants expressing a GFP-miR168 sensor gene confirmed that the elicitor-induced miR168 is active. MiR823, targeting Chromomethylase3 (CMT3) involved in RNA-directed DNA methylation (RdDM) was also found to be regulated by fungal elicitors. In addition to known miRNAs, microarray analysis allowed the identification of an elicitor-inducible small RNA that was incorrectly annotated as a miRNA. Studies on Arabidopsis mutants impaired in small RNA biogenesis demonstrated that this sRNA, is a heterochromatic-siRNA (hc-siRNA) named as siRNA415. Hc-siRNAs are known to be involved in RNA-directed DNA methylation (RdDM). SiRNA415 is detected in several plant species. CONCLUSION: Results here presented support a transcriptional regulatory mechanism underlying MIR168 expression. This finding highlights the importance of miRNA functioning in adaptive processes of Arabidopsis plants to fungal infection. The results of this study also lay a foundation for the involvement of RdDM processes through the activity of siRNA415 and miR823 in mediating regulation of immune responses in Arabidopsis plants.


Subject(s)
Arabidopsis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Diseases/genetics , RNA, Small Interfering/genetics , Arabidopsis/microbiology , Fungi , Phenotype , Plant Diseases/microbiology , Plants, Genetically Modified , Promoter Regions, Genetic , RNA Precursors , Transcriptional Activation
6.
New Phytol ; 199(1): 212-227, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23627500

ABSTRACT

Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.


Subject(s)
Alternative Splicing , MicroRNAs/metabolism , Oryza/genetics , Oryza/microbiology , Plant Proteins/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plants, Genetically Modified , RNA, Plant/genetics , Reproducibility of Results , Species Specificity , Nicotiana/genetics
7.
Nucleic Acids Res ; 41(8): 4699-708, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23482394

ABSTRACT

Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.


Subject(s)
Cell Nucleus/enzymology , Cytoplasm/enzymology , Gene Expression Regulation, Plant , RNA Interference , RNA Stability , RNA, Plant/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation , Nonsense Mediated mRNA Decay
8.
EMBO J ; 31(7): 1704-13, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22327216

ABSTRACT

Formation of trans-acting small interfering RNAs (ta-siRNAs) from the TAS3 precursor is triggered by the AGO7/miR390 complex, which primes TAS3 for conversion into double-stranded RNA by the RNA-dependent RNA polymerase RDR6 and SGS3. These ta-siRNAs control several aspects of plant development. The mechanism routing AGO7-cleaved TAS3 precursor to RDR6/SGS3 and its subcellular organization are unknown. We show that AGO7 accumulates together with SGS3 and RDR6 in cytoplasmic siRNA bodies that are distinct from P-bodies. siRNA bodies colocalize with a membrane-associated viral protein and become positive for stress-granule markers upon stress-induced translational repression, this suggests that siRNA bodies are membrane-associated sites of accumulation of mRNA stalled during translation. AGO7 congregates with miR390 and SGS3 in membranes and its targeting to the nucleus prevents its accumulation in siRNA bodies and ta-siRNA formation. AGO7 is therefore required in the cytoplasm and membranous siRNA bodies for TAS3 processing, revealing a hitherto unknown role for membrane-associated ribonucleoparticles in ta-siRNA biogenesis and AGO action in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Inclusion Bodies/metabolism , RNA, Small Interfering/metabolism , Arabidopsis Proteins/genetics , RNA, Double-Stranded/metabolism
9.
Mol Plant ; 3(4): 729-39, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20603381

ABSTRACT

The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases). Generally, the resulting npcRNAs exert their regulatory effects through interactions with RNA-binding proteins (or RBPs) within ribonucleoprotein particles (or RNPs). A large group of RBPs are implicated in the silencing machinery through small interfering RNAs (siRNAs) and their localization suggests that several act in the nucleus to trigger epigenetic and chromatin changes at a whole-genome scale. Other nuclear RBPs interact with npcRNAs and change their localization. In the fission yeast, the RNA-binding Mei2p protein, playing pivotal roles in meiosis, interact with a meiotic npcRNA involved in its nuclear re-localization. Related processes have been identified in plants and the ENOD40 npcRNA was shown to re-localize a nuclear-speckle RBP from the nucleus to the cytoplasm in Medicago truncatula. Plant RBPs have been also implicated in RNA-mediated chromatin silencing in the FLC locus through interaction with specific antisense transcripts. In this review, we discuss the interactions between RBPs and npcRNAs in the context of nuclear-related processes and their implication in plant development and stress responses. We propose that these interactions may add a regulatory layer that modulates the interactions between the nuclear genome and the environment and, consequently, control plant developmental plasticity.


Subject(s)
Cell Nucleus/metabolism , Plant Proteins/metabolism , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Models, Biological , Plant Proteins/genetics , RNA-Binding Proteins/genetics
10.
Protein Expr Purif ; 70(2): 206-10, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19896535

ABSTRACT

The mould Aspergillus giganteus produces a basic, low molecular weight protein (AFP) showing in vitro and in vivo antifungal properties against important plant pathogens. AFP is secreted as an inactive precursor containing an amino-terminal extension of six amino acids (lf-AFP) which is later removed to produce the active protein. The molecular basis to explain this behavior and the features that determine the fungal specificity of this protein are not completely solved. In this work, the mature AFP (AFP *) and a version of AFP with an extended amino-terminal (proAFP) have been cloned and produced in the yeast Pichia pastoris. The two proteins have been purified to homogeneity and characterized from structural and functional points of view. Recombinant AFP * produced is practically indistinguishable from the natural fungal protein in terms of its spectroscopic and antifungal properties while proAFP is mostly inactive under identical assay conditions. The availability of an active AFP protein produced in P. pastoris will permit investigation of the mode of action and targeting specificity of AFP by using site-directed mutagenesis approaches.


Subject(s)
Antifungal Agents/metabolism , Fungal Proteins/biosynthesis , Amino Acid Sequence , Antifungal Agents/pharmacology , Aspergillus/genetics , Base Sequence , Fungal Proteins/isolation & purification , Fusarium/drug effects , Molecular Sequence Data , Pichia/metabolism
11.
FEBS Lett ; 583(6): 1039-44, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19236868

ABSTRACT

MicroRNAs (miRNAs) are small RNAs acting as regulators of eukaryotic gene expression at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptation to the environment. We show that the accumulation of four Arabidopsis miRNAs (miR171, miR398, miR168 and miR167) oscillates during the diurnal cycle, their accumulation increasing during the light period of the daytime and decreasing in darkness. This oscillatory pattern of miRNA accumulation is not governed by the circadian clock. These results suggest a potential role of light in controlling miRNA accumulation while defining a new level of regulation of miRNA gene expression in Arabidopsis.


Subject(s)
Arabidopsis/genetics , Circadian Rhythm , MicroRNAs/metabolism , Adaptation, Biological/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins , Circadian Rhythm/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/physiology , Light , MicroRNAs/genetics , Transcription Factors/genetics
12.
Appl Microbiol Biotechnol ; 72(5): 883-95, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16557374

ABSTRACT

The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/metabolism , Fungal Proteins/pharmacology , Magnaporthe/drug effects , Antifungal Agents/metabolism , DNA, Fungal/metabolism , HeLa Cells , Humans , Hyphae/cytology , Hyphae/drug effects , Magnaporthe/cytology , Protein Binding , RNA, Fungal/metabolism
13.
Mol Plant Microbe Interact ; 18(9): 960-72, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16167766

ABSTRACT

Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-related (PR) genes, ZmPR4, mpi, and PRms, in transgenic rice. Chimeric gene fusions were prepared between the maize promoters and the beta-glucuronidase reporter gene (gus A). Histochemical assays of GUS activity in transgenic rice revealed that the ZmPR4 promoter is strongly induced in response to fungal infection, treatment with fungal elicitors, and mechanical wounding. The ZmPR4 promoter is not active in the seed endosperm. The mpi promoter also proved responsiveness to fungal infection and wounding but not to treatment with elicitors. In contrast, no activity of the PRms promoter in leaves of transgenic rice was observed. Transgenic plants expressing the afp gene under the control of the ZmPR4 promoter were generated. Transformants showed resistance to M. grisea at various levels. Our results suggest that pathogen-inducible expression of the afp gene in rice plants may be a practical way for protection against the blast fungus. Most agricultural crop species suffer from a vast array of fungal diseases that cause severe yield losses all over the world. Rice blast, caused by the fungus Magnaporthe grisea (Herbert) Barr (anamorph Pyricularia grisea), is the most devastating disease of cultivated rice (Oryza sativa L.), due to its


Subject(s)
Aspergillus/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Magnaporthe/pathogenicity , Oryza/microbiology , Base Sequence , DNA, Plant/genetics , Genes, Fungal , Genes, Plant , Genes, Reporter , Glucuronidase/genetics , Glucuronidase/metabolism , Molecular Sequence Data , Oryza/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
14.
Divulg. saúde debate ; (32): 61-64, maio 2005. tab
Article in Portuguese | LILACS | ID: lil-412631

ABSTRACT

Na investigaçao de óbitos de menores de um ano ocorridos na cidade de Sorocaba, obeservou-se que a maioria destes ocorriam após uma, duas ou mais internações. Esse fato transformou a internaçao em um evento sentinela e foi criado um sistema de seguimento dessas crianças, articulando-se parcerias entre o Programa Recém-nascido de Risco, enfermarias pediàtricas da cidade de Sorocaba, Unidades Básicas de Saúde e Serviços social e psicológico. Com o desenvolvimento do Programa Bebê Saudável, observou-se uma tendência de queda, de 2003 para 2004, na mortalidade pós-neonatal, apontando uma reduçao de 23,4 por cento. Observou-se, ainda, maior integraçao entre a rede bàsica e hospitalar e maior comprometimento dos profissionais com o RN de Risco


Subject(s)
Health Surveillance , Infant Mortality
15.
Phytopathology ; 93(11): 1344-53, 2003 Nov.
Article in English | MEDLINE | ID: mdl-18944061

ABSTRACT

ABSTRACT Botrytis blight (gray mold), caused by Botrytis cinerea, is one of the most widely distributed diseases of ornamental plants. In geranium plants, gray mold is responsible for important losses in production. The mold Aspergillus giganteus is known to produce and secrete a basic low-molecular-weight protein, the antifungal protein (AFP). Here, the antifungal properties of the Aspergillus AFP against various B. cinerea isolates obtained from naturally infected geranium plants were investigated. AFP strongly inhibited mycelial growth as well as conidial germination of B. cinerea. Microscopic observations of fungal cultures treated with AFP revealed reduced hyphal elongation and swollen hyphal tips. Washout experiments in which B. cinerea was incubated with AFP for different periods of time and then washed away revealed a fungicidal activity of AFP. Application of AFP on geranium plants protected leaves against Botrytis infection. Cecropin A also was active against this pathogen. An additive effect against the fungus was observed when AFP was combined with cecropin A. These results are discussed in relation to the potential of the afp gene to enhance crop protection against B. cinerea diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...