Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3211, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615042

ABSTRACT

T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and ß chains. Here, we collect and curate a dataset of 17,715 αßTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.


Subject(s)
COVID-19 , Deep Learning , Humans , T-Lymphocytes , Epitopes , Immunodominant Epitopes
2.
Bioinform Adv ; 3(1): vbad016, 2023.
Article in English | MEDLINE | ID: mdl-37143924

ABSTRACT

Motivation: Being able to interpret and explain the predictions made by a machine learning model is of fundamental importance. Unfortunately, a trade-off between accuracy and interpretability is often observed. As a result, the interest in developing more transparent yet powerful models has grown considerably over the past few years. Interpretable models are especially needed in high-stake scenarios, such as computational biology and medical informatics, where erroneous or biased models' predictions can have deleterious consequences for a patient. Furthermore, understanding the inner workings of a model can help increase the trust in the model. Results: We introduce a novel structurally constrained neural network, MonoNet, which is more transparent, while still retaining the same learning capabilities of traditional neural models. MonoNet contains monotonically connected layers that ensure monotonic relationships between (high-level) features and outputs. We show how, by leveraging the monotonic constraint in conjunction with other post hoc strategies, we can interpret our model. To demonstrate our model's capabilities, we train MonoNet to classify cellular populations in a single-cell proteomic dataset. We also demonstrate MonoNet's performance in other benchmark datasets in different domains, including non-biological applications (in the Supplementary Material). Our experiments show how our model can achieve good performance, while providing at the same time useful biological insights about the most important biomarkers. We finally carry out an information-theoretical analysis to show how the monotonic constraint actively contributes to the learning process of the model. Availability and implementation: Code and sample data are available at https://github.com/phineasng/mononet. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
iScience ; 26(2): 106017, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36844457

ABSTRACT

Tests used in the empirical sciences are often (implicitly) assumed to be representative of a given research question in the sense that similar tests should lead to similar results. Here, we show that this assumption is not always valid. We illustrate our argument with the example of resting-state electroencephalogram (EEG). We used multiple analysis methods, contrary to typical EEG studies where one analysis method is used. We found, first, that many EEG features correlated significantly with cognitive tasks. However, these EEG features correlated weakly with each other. Similarly, in a second analysis, we found that many EEG features were significantly different in older compared to younger participants. When we compared these EEG features pairwise, we did not find strong correlations. In addition, EEG features predicted cognitive tasks poorly as shown by cross-validated regression analysis. We discuss several explanations of these results.

SELECTION OF CITATIONS
SEARCH DETAIL
...