Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(49): e2205789119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36459650

ABSTRACT

Viruses depend on cellular metabolic resources to supply the energy and biomolecular building blocks necessary for their replication. Human cytomegalovirus (HCMV), a leading cause of birth defects and morbidity in immunosuppressed individuals, induces numerous metabolic activities that are important for productive infection. However, many of the mechanisms through which these metabolic activities are induced and how they contribute to infection are unclear. We find that HCMV infection of fibroblasts induces a neuronal gene signature as well as the expression of several metabolic enzyme isoforms that are typically expressed in other tissue types. Of these, the most substantially induced glycolytic gene was the neuron-specific isoform of enolase 2 (ENO2). Induction of ENO2 expression is important for HCMV-mediated glycolytic activation as well as for the virally induced remodeling of pyrimidine-sugar metabolism, which provides the glycosyl subunits necessary for protein glycosylation. Inhibition of ENO2 expression or activity reduced uridine diphosphate (UDP)-sugar pools, attenuated the accumulation of viral glycoproteins, and induced the accumulation of noninfectious viral particles. In addition, our data indicate that the induction of ENO2 expression depends on the HCMV UL38 protein. Collectively, our data indicate that HCMV infection induces a tissue atypical neuronal glycolytic enzyme to activate glycolysis and UDP-sugar metabolism, increase the accumulation of glycosyl building blocks, and enable the expression of an essential viral glycoprotein and the production of infectious virions.


Subject(s)
Cytomegalovirus , Phosphopyruvate Hydratase , Humans , Phosphopyruvate Hydratase/genetics , Neurons , Sugars , Uridine Diphosphate
2.
PLoS Pathog ; 18(7): e1010722, 2022 07.
Article in English | MEDLINE | ID: mdl-35834576

ABSTRACT

Cytokines induce an anti-viral state, yet many of the functional determinants responsible for limiting viral infection are poorly understood. Here, we find that TNFα induces significant metabolic remodeling that is critical for its anti-viral activity. Our data demonstrate that TNFα activates glycolysis through the induction of hexokinase 2 (HK2), the isoform predominantly expressed in muscle. Further, we show that glycolysis is broadly important for TNFα-mediated anti-viral defense, as its inhibition attenuates TNFα's ability to limit the replication of evolutionarily divergent viruses. TNFα was also found to modulate the metabolism of UDP-sugars, which are essential precursor substrates for glycosylation. Our data indicate that TNFα increases the concentration of UDP-glucose, as well as the glucose-derived labeling of UDP-glucose and UDP-N-acetyl-glucosamine in a glycolytically-dependent manner. Glycolysis was also necessary for the TNFα-mediated accumulation of several glycosylated anti-viral proteins. Consistent with the importance of glucose-driven glycosylation, glycosyl-transferase inhibition attenuated TNFα's ability to promote the anti-viral cell state. Collectively, our data indicate that cytokine-mediated metabolic remodeling is an essential component of the anti-viral response.


Subject(s)
Antiviral Agents , Tumor Necrosis Factor-alpha , Cytokines/metabolism , Glucose/metabolism , Glycolysis , Tumor Necrosis Factor-alpha/metabolism , Uridine Diphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...