Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Braz J Biol ; 84: e262851, 2022.
Article in English | MEDLINE | ID: mdl-35674600

ABSTRACT

Nontuberculous mycobacteria infection is one of the most common chronic bacterial diseases in ornamental aquarium fish and appears to be directly related to stressful husbandry practices. Furthermore, it also represents zoonotic potential. Here we present the isolation and characterization of non-tuberculous mycobacteria from diseased freshwater angelfish (Pterophyllum scalare) in São Paulo, Brazil. Nine discarded breeding females with signs of disease were evaluated. The fish exhibited lethargy, loss of appetite, cachexia, skin ulcers, and exophthalmia. At necropsy, four fishes presented macroscopic granulomas in the spleen. Mycobacterium chelonae, M. fortuitum, M. gordonae, M. intracellulare and M. peregrinum were isolated and identified by hsp65 PCR restriction analysis. Histopathological analysis revealed microscopic lesions compatible with mycobacteriosis, and Mycobacterium bacillus were observed by Ziehl-Neelsen stain. Notably, all Mycobacterium species identified in this study have already been reported in human patients; therefore, diseased animals may be a source of infection for people who handle fish and aquariums.


Subject(s)
Cichlids , Fish Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium , Animals , Brazil , Fresh Water , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/veterinary
2.
J Dairy Sci ; 105(4): 3367-3376, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35181136

ABSTRACT

Clinical endometritis (CE) and subclinical endometritis (SCE) are diseases that affect dairy cows during the puerperium, causing negative effects on the animals' milk production and fertility. The objective of this study was to assess the main bacteria related to cases of CE and SCE from uterine samples of dairy cows in Brazilian herds. Selective and differential media were used for isolation of aerobic and anaerobic bacteria and further MALDI-TOF mass spectrometry (MS) identification. A total of 279 lactating dairy cows with 28 to 33 d in milk from 6 commercial farms were evaluated. Initially, cows were classified in 3 groups: cytologic healthy cows (n = 161), cows with CE (n = 83), and cows with SCE (n = 35). Healthy animals presented 97 species, followed by the CE group with 53 identified species, and SCE cows presented only 21 bacterial species. We found a significantly higher isolation rate of Trueperella pyogenes in CE (26.5%) cows compared with healthy and SCE cows. Some anaerobic species were exclusively isolated from the CE group, even though they presented lower frequency. Interestingly, 18.1% of samples from CE cows and 40% of SCE cows were negative to bacterial isolation. Despite the use of culture-dependent methods instead of molecular methods, the present study enabled the identification of a complex community of 127 different species from 48 genera, composed of aerobic and anaerobic bacterial species among the 3 different animal groups. The method of sample collection, culture, and identification by MALDI-TOF MS were essential for the success of the analyses.


Subject(s)
Cattle Diseases , Endometritis , Animals , Cattle , Cattle Diseases/microbiology , Endometritis/microbiology , Endometritis/veterinary , Female , Lactation , Milk/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary
3.
Braz. j. biol ; 82: e233523, 2022. tab
Article in English | LILACS, VETINDEX | ID: biblio-1153470

ABSTRACT

Microbiological studies of the sanitary and health status of psittacine birds that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify bacteria than conventional microbiology methods. The aim of this study was to evaluate the health status of psittacines housed in captivity, by assessment of Gram-negative bacteria from fecal microbiota through MALDI- TOF MS identification. The results indicate high frequency of Gram-negative bacteria in feces (96.5%), especially from the Enterobacteriaceae family (88.7%). The most prevalent bacteria were Escherichia coli (39.0%), Proteus vulgaris (12.2%), Klebsiella spp. (12.1%) and Raoultella ornithinolytica (8.7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. and Escherichia hermannii were isolated with lower frequency. . All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans. These findings reinforce that MALDI- TOF MS proved to be a rapid and accurate method of identification of the microorganism and evaluation of the health status of psittacines, providing relevant data to assist decision-making regarding the sanitary protocols in wildlife centers, and possible future reintroduction of wild birds.


Estudos microbiológicos da sanidade de psitacídeos que serão reintroduzidos são importantes para avaliar se esses animais atuam como portadores de agentes patogênicos para outros animais e humanos. A espectrometria de massa por ionização/dessorção de matriz assistida por laser/tempo de vôo (MALDI-TOF MS) é um método mais rápido e preciso para identificar bactérias na comparação com métodos convencionais de microbiologia. O objetivo deste estudo foi avaliar o estado de saúde de psitacídeos cativos, identificando bactérias Gram-negativas da microbiota fecal por MALDI -TOF MS. Os resultados indicaram alta frequência de bactérias Gram-negativas nas fezes (96,5%), principalmente da família Enterobacteriaceae (88,7%). As mais prevalentes foram Escherichia coli (39,0%), Proteus vulgaris (12,2%), Klebsiella spp. (12,1%) e Raoultella ornithinolytica (8,7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. e Escherichia hermannii foram isolados com menor frequência. Todos esses agentes são potencialmente patogênicos para os papagaios e podem causar infecções sistêmicas em outros animais e seres humanos. Esses achados reforçam que o MALDI- TOF MS é um método rápido e preciso de identificação do microrganismo e avaliação do estado de saúde dos psitacídeos, fornecendo dados relevantes para auxiliar na tomada de decisões sobre os protocolos sanitários em centros de triagem de animais selvagens e sobre a possibilidade de reintrodução futura.


Subject(s)
Humans , Animals , Psittaciformes , Gram-Negative Bacteria , Proteus , Providencia , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Enterobacteriaceae
4.
Braz. j. biol ; 82: 1-7, 2022. tab
Article in English | LILACS, VETINDEX | ID: biblio-1468437

ABSTRACT

Microbiological studies of the sanitary and health status of psittacine birds that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify bacteria than conventional microbiology methods. The aim of this study was to evaluate the health status of psittacines housed in captivity, by assessment of Gram-negative bacteria from fecal microbiota through MALDI- TOF MS identification. The results indicate high frequency of Gram-negative bacteria in feces (96.5%), especially from the Enterobacteriaceae family (88.7%). The most prevalent bacteria were Escherichia coli (39.0%), Proteus vulgaris (12.2%), Klebsiella spp. (12.1%) and Raoultella ornithinolytica (8.7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. and Escherichia hermannii were isolated with lower frequency. . All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans. These findings reinforce that MALDI- TOF MS proved to be a rapid and accurate method of identification of the microorganism and evaluation of the health status of psittacines, providing relevant data to assist decision-making regarding the sanitary protocols in wildlife centers, and possible future reintroduction of wild birds.


Estudos microbiológicos da sanidade de psitacídeos que serão reintroduzidos são importantes para avaliar se esses animais atuam como portadores de agentes patogênicos para outros animais e humanos. A espectrometria de massa por ionização/dessorção de matriz assistida por laser/tempo de vôo (MALDI-TOF MS) é um método mais rápido e preciso para identificar bactérias na comparação com métodos convencionais de microbiologia. O objetivo deste estudo foi avaliar o estado de saúde de psitacídeos cativos, identificando bactérias Gram-negativas da microbiota fecal por MALDI -TOF MS. Os resultados indicaram alta frequência de bactérias Gram-negativas nas fezes (96,5%), principalmente da família Enterobacteriaceae (88,7%). As mais prevalentes foram Escherichia coli (39,0%), Proteus vulgaris (12,2%), Klebsiella spp. (12,1%) e Raoultella ornithinolytica (8,7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. e Escherichia hermannii foram isolados com menor frequência. Todos esses agentes são potencialmente patogênicos para os papagaios e podem causar infecções sistêmicas em outros animais e seres humanos. Esses achados reforçam que o MALDI- TOF MS é um método rápido e preciso de identificação do microrganismo e avaliação do estado de saúde dos psitacídeos, fornecendo dados relevantes para auxiliar na tomada de decisões sobre os protocolos sanitários em centros de triagem de animais selvagens e sobre a possibilidade de reintrodução futura.


Subject(s)
Animals , Gram-Negative Bacteria/pathogenicity , Enterobacteriaceae/pathogenicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Parrots/microbiology
5.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468624

ABSTRACT

Abstract Microbiological studies of the sanitary and health status of psittacine birds that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify bacteria than conventional microbiology methods. The aim of this study was to evaluate the health status of psittacines housed in captivity, by assessment of Gram-negative bacteria from fecal microbiota through MALDI- TOF MS identification. The results indicate high frequency of Gram-negative bacteria in feces (96.5%), especially from the Enterobacteriaceae family (88.7%). The most prevalent bacteria were Escherichia coli (39.0%), Proteus vulgaris (12.2%), Klebsiella spp. (12.1%) and Raoultella ornithinolytica (8.7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. and Escherichia hermannii were isolated with lower frequency. . All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans. These findings reinforce that MALDI- TOF MS proved to be a rapid and accurate method of identification of the microorganism and evaluation of the health status of psittacines, providing relevant data to assist decision-making regarding the sanitary protocols in wildlife centers, and possible future reintroduction of wild birds.


Resumo Estudos microbiológicos da sanidade de psitacídeos que serão reintroduzidos são importantes para avaliar se esses animais atuam como portadores de agentes patogênicos para outros animais e humanos. A espectrometria de massa por ionização/dessorção de matriz assistida por laser/tempo de vôo (MALDI-TOF MS) é um método mais rápido e preciso para identificar bactérias na comparação com métodos convencionais de microbiologia. O objetivo deste estudo foi avaliar o estado de saúde de psitacídeos cativos, identificando bactérias Gram-negativas da microbiota fecal por MALDI -TOF MS. Os resultados indicaram alta frequência de bactérias Gram-negativas nas fezes (96,5%), principalmente da família Enterobacteriaceae (88,7%). As mais prevalentes foram Escherichia coli (39,0%), Proteus vulgaris (12,2%), Klebsiella spp. (12,1%) e Raoultella ornithinolytica (8,7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. e Escherichia hermannii foram isolados com menor frequência. Todos esses agentes são potencialmente patogênicos para os papagaios e podem causar infecções sistêmicas em outros animais e seres humanos. Esses achados reforçam que o MALDI- TOF MS é um método rápido e preciso de identificação do microrganismo e avaliação do estado de saúde dos psitacídeos, fornecendo dados relevantes para auxiliar na tomada de decisões sobre os protocolos sanitários em centros de triagem de animais selvagens e sobre a possibilidade de reintrodução futura.

6.
Braz J Biol ; 82: e233523, 2021.
Article in English | MEDLINE | ID: mdl-33787713

ABSTRACT

Microbiological studies of the sanitary and health status of psittacine birds that will be reintroduced is important in evaluating whether these animals act as carriers of pathogenic agents to other animals and humans. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify bacteria than conventional microbiology methods. The aim of this study was to evaluate the health status of psittacines housed in captivity, by assessment of Gram-negative bacteria from fecal microbiota through MALDI- TOF MS identification. The results indicate high frequency of Gram-negative bacteria in feces (96.5%), especially from the Enterobacteriaceae family (88.7%). The most prevalent bacteria were Escherichia coli (39.0%), Proteus vulgaris (12.2%), Klebsiella spp. (12.1%) and Raoultella ornithinolytica (8.7%). Proteus hauseri, Citrobacter spp., Morganella morgannii, Providencia rettgeri, Enterobacter spp. and Escherichia hermannii were isolated with lower frequency. . All these agents are potentially pathogenic for parrots and can cause systemic infections in other animals and humans. These findings reinforce that MALDI- TOF MS proved to be a rapid and accurate method of identification of the microorganism and evaluation of the health status of psittacines, providing relevant data to assist decision-making regarding the sanitary protocols in wildlife centers, and possible future reintroduction of wild birds.


Subject(s)
Gram-Negative Bacteria , Psittaciformes , Animals , Enterobacteriaceae , Humans , Proteus , Providencia , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
J Hosp Infect ; 99(3): 346-355, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29066140

ABSTRACT

BACKGROUND: Vancomycin-resistant enterococci (VRE) are an important agent of colonization and infection in haematology patients. However, the role of virulence on VRE colonization and infection is controversial. AIM: To characterize the lineage, virulence and resistance profile of VRE infection and colonization isolates; as well as their impact on outcome of haematology patients using a regression logistic model. METHODS: Eighty-six isolates (80 Enterococcus faecium and six E. faecalis) from 76 patients were evaluated. Polymerase chain reaction for resistance and virulence genes, and pulsed-field gel electrophoresis and whole genome sequencing of the major clusters, were performed. Bivariate and multivariate analyses were carried out to evaluate the role of virulence genes on outcome. FINDINGS: All isolates harboured the vanA gene. Regarding the virulence genes, 96.5% of isolates were positive for esp, 69.8% for gelE and asa1 genes. VRE infection isolates were more virulent than colonization isolates and harboured more often the gelE gene (P = 0.008). Infections caused by VRE carrying asa1 gene resulted more frequently in death (P = 0.004), but only the predominant clone remained as protector in the multivariate model. The E. faecium strains were assigned to seven STs (ST78, ST412, ST478, ST792, ST896, ST987, ST963) that belonged to CC17. The E. faecalis sequenced belonged to ST9 (CC9). CONCLUSION: E. faecium was predominant, and infection isolates were more virulent than colonization isolates and harboured more often the gene gelE. Infections caused by VRE carrying the asa1 gene appeared to be associated with a fatal outcome.


Subject(s)
Enterococcus faecalis/isolation & purification , Enterococcus faecium/isolation & purification , Gram-Positive Bacterial Infections/epidemiology , Hematologic Diseases/complications , Vancomycin-Resistant Enterococci/isolation & purification , Adolescent , Adult , Aged , Child , Child, Preschool , Electrophoresis, Gel, Pulsed-Field , Enterococcus faecalis/classification , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecium/classification , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Female , Genes, Bacterial , Genotype , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/mortality , Humans , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Epidemiology , Polymerase Chain Reaction , Prevalence , Retrospective Studies , Survival Analysis , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics , Virulence Factors/analysis , Virulence Factors/genetics , Whole Genome Sequencing , Young Adult
8.
Vet Microbiol ; 184: 27-30, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26854341

ABSTRACT

Psittacidae are frequently bred as pets worldwide, but little is known about the zoonotic risks of these animals. The objective of this study was to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) in the feces of psittacine birds housed as pets. A total of 171 fecal samples (67 cockatiels, 59 budgerigars, and 45 agapornis) were cultured. Forty-two (E. coli) strains were identified, and the presence of the eae, stx1, and stx2 genes was determined using PCR. The antimicrobial resistance profiles of the STEC strains were determined using the disk diffusion method and phylogenetic analysis according to the new Clermont phylotyping method. Using these methods, 19.4% (8/42) of the STEC strains were determined to be positive for the eae and stx2 genes. The results revealed a STEC frequency of 4.6% in the birds (8/171), with a percentage of 8.47% in budgerigars (5/59), 4.47% in cockatiels (3/67), and 0% in agapornis (0/45). None of the STEC isolates belonged to the O157 serogroup. Most of the strains were classified as sensitive to the 18 antibiotics tested. None of the strains exhibited a multiresistance profile. In the phylogenetic analysis, two strains were classified as non-typeable, three were classified as B2, two were classified as F, and one was classified as Clade I. Seven of the eight STEC strains showed a clonal profile using AFLP. E. coli strains that are stx2(+) plus eae(+) are usually associated with severe human diseases such as hemorrhagic colitis and hemolytic-uremic syndrome. The STEC-positive results indicate the zoonotic risk of breeding psittacidae in home environments.


Subject(s)
Escherichia coli Infections/epidemiology , Parrots/microbiology , Pets/microbiology , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Zoonoses/epidemiology , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Feces/microbiology , Phylogeny , Prevalence , Risk Factors , Shiga-Toxigenic Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...