Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 32(11): 3748-58, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423095

ABSTRACT

We have previously shown that an experience-driven improvement in olfactory discrimination (perceptual learning) requires the addition of newborn neurons in the olfactory bulb (OB). Despite this advance, the mechanisms which govern the selective survival of newborn OB neurons following learning remain largely unknown. We propose that activity of the noradrenergic system is a critical mediator providing a top-down signal to control the selective survival of newly born cells and support perceptual learning. In adult mice, we used pharmacological means to manipulate the noradrenergic system and neurogenesis and to assess their individual and additive effects on behavioral performance on a perceptual learning task. We then looked at the effects of these manipulations on regional survival of adult-born cells in the OB. Finally, using confocal imaging and electrophysiology, we investigated potential mechanisms by which noradrenaline could directly influence the survival of adult-born cells. Consistent with our hypotheses, direct manipulation of noradrenergic transmission significantly effect on adult-born cell survival and perceptual learning. Specifically, learning required both the presence of adult-born cell and noradrenaline. Finally, we provide a mechanistic link between these effects by showing that adult-born neurons receive noradrenergic projections and are responsive to noradrenaline. Based upon these data we argue that noradrenergic transmission is a key mechanism selecting adult-born neurons during learning and demonstrate that top-down neuromodulation acts on adult-born neuron survival to modulate learning performance.


Subject(s)
Adrenergic Neurons/physiology , Learning/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Olfactory Perception/physiology , Age Factors , Animals , Cell Survival/physiology , Male , Mice , Mice, Inbred C57BL , Odorants , Random Allocation
2.
Proc Natl Acad Sci U S A ; 106(42): 17980-5, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19815505

ABSTRACT

Perceptual learning is required for olfactory function to adapt appropriately to changing odor environments. We here show that newborn neurons in the olfactory bulb are not only involved in, but necessary for, olfactory perceptual learning. First, the discrimination of perceptually similar odorants improves in mice after repeated exposure to the odorants. Second, this improved discrimination is accompanied by an elevated survival rate of newborn inhibitory neurons, preferentially involved in processing of the learned odor, within the olfactory bulb. Finally, blocking neurogenesis before and during the odorant exposure period prevents this learned improvement in discrimination. Olfactory perceptual learning is thus mediated by the reinforcement of functional inhibition in the olfactory bulb by adult neurogenesis.


Subject(s)
Learning/physiology , Neurogenesis/physiology , Olfactory Perception/physiology , Animals , Cell Survival , Discrimination Learning/physiology , Electrophysiological Phenomena , Glutamate Decarboxylase/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neurons/cytology , Neurons/physiology , Odorants , Olfactory Bulb/cytology , Olfactory Bulb/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...