Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 9(1): 117-23, 2016.
Article in English | MEDLINE | ID: mdl-26460200

ABSTRACT

BACKGROUND: Pairing sensory or motor events with vagus nerve stimulation (VNS) can reorganize sensory or motor cortex. Repeatedly pairing a tone with a brief period of VNS increases the proportion of primary auditory cortex (A1) responding to the frequency of the paired tone. However, the relationship between VNS intensity and cortical map plasticity is not known. OBJECTIVE/HYPOTHESIS: The primary goal of this study was to determine the range of VNS intensities that can be used to direct cortical map plasticity. METHODS: The rats were exposed to a 9 kHz tone paired with VNS at intensities of 0.4, 0.8, 1.2, or 1.6 mA. RESULTS: In rats that received moderate (0.4-0.8 mA) intensity VNS, 75% more cortical neurons were tuned to frequencies near the paired tone frequency. A two-fold effective range is broader than expected based on previous VNS studies. Rats that received high (1.2-1.6 mA) intensity VNS had significantly fewer neurons tuned to the same frequency range compared to the moderate intensity group. CONCLUSION: This result is consistent with previous results documenting that VNS is memory enhancing as a non-monotonic relationship of VNS intensity.


Subject(s)
Auditory Cortex/physiology , Brain Mapping , Motor Cortex/physiology , Neuronal Plasticity , Vagus Nerve Stimulation , Animals , Female , Rats , Rats, Sprague-Dawley
2.
Dev Neurobiol ; 74(10): 972-86, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24639033

ABSTRACT

Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Autistic Disorder/physiopathology , Speech Acoustics , Acoustic Stimulation , Animals , Disease Models, Animal , Male , Microelectrodes , Rats, Sprague-Dawley , Valproic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...